When i don't use dropout in my model for cat and dog classification, the predicted values remain normal i.e not the same value for all images.
But when I use tf.nn.dropout
with keep_prob = 0.8
for my model which was recommended for regularizing the model and for better accuracy, it keeps predicting the same values like this. How do i solve this? Every tutorial or code out there uses tflearn
and this does not happen.
array([[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00]`
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],
[ 2.20128131e+00, 1.78127408e+00],