There's a feature, if not a bug, that when slices are mixed in the middle of advanced indexing, the sliced dimensions are put at the end.
Thus for example:
In [204]: B = np.zeros((2,3,4,5),int)
In [205]: ind=[0,1,2,3,4]
In [206]: B[1,:,:,ind].shape
Out[206]: (5, 3, 4)
The 3,4 dimensions have been placed after the ind
, 5.
We can get around that by indexing first with 1, and then the rest:
In [207]: B[1][:,:,ind].shape
Out[207]: (3, 4, 5)
In [208]: B[1][:,:,ind] = np.arange(3*4*5).reshape(3,4,5)
In [209]: B[1]
Out[209]:
array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],
[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])
This only works when that first index is a scalar. If it too were a list (or array), we'd get an intermediate copy, and couldn't set the value like this.
https://docs.scipy.org/doc/numpy-1.15.0/reference/arrays.indexing.html#combining-advanced-and-basic-indexing
It's come up in other SO questions, though not recently.
weird result when using both slice indexing and boolean indexing on a 3d array