1

Following is the code to create a custom classifier from Watson API in Electron

export function uploadVRData(api_key, payload, dest) {
  return (dispatch) => {
   const formData = new FormData();
   formData.append('name', payload.classifier);
   payload.watsonTrainingSet.map((data) => {
      formData.append(`${data.classLabel}_positive_examples`, new 
        Blob(fs.readFileSync(path.resolve(__dirname, `../../../../../..${data.zipPath}`))));
    });

   axios({
     method: 'post',
     url: 'https://gateway.watsonplatform.net/visual-recognition/api/v3/classifiers?version=2018-03-19',
     data: formData,
     config: {
     headers: {
      Origin: '',
    },
  },
     auth: {
     username: 'apikey',
     password: '<my-api-key>',
  },
}).then((res) => {
  console.log(res);
}).catch((err1) => {
  console.log(err1);
});

I get 200 response, but it later fails with this error

Cannot execute learning task. : Could not train classifier. Verify there are at least 10 positive training images for each class, and at least 10 other unique training images (inluding optional negative_examples). There is a minimum of 1 positive class. Not enough samples for training, class: (my-class-name) has only 0 samples

Although I am able to successfully create classifier through Postman. But from Electron it fails. Can anyone help me?

sandy
  • 509
  • 1
  • 6
  • 23

0 Answers0