Our code base currently supports a single SWIG interface file (for Python) that has grown over the years to include roughly 300 C++ classes (technically interfaces), all of which inherit from a single base class, and all of which exist in a single global namespace. This allows us, with a minimal amount of SWIG code, to implement dynamic casting among the C++ classes that the SWIG classes represent while at the same time simplifying by keeping the C++ inheritance structure out of SWIG.
As long as we compiled our SWIG interface in a single module, this mechanism worked well -- but as the SWIG interface file has grown it has become difficult to manage, and compile/link times have grown. To address this I split the interface file up into separate modules by the names of the derived classes -- one module for class names beginning with "A" to "G", one for names beginning with "H" to "N", etc., resulting in four derived-class modules and a base class module. I was able to get these modules to compile and link, and exhibit expected behavior for the dynamic casting, following the method outlined here: (http://www.swig.org/Doc3.0/SWIGDocumentation.html#Modules_nn1)
However, breaking the single module into four parts (five parts counting the base class) causes problems with the namespace when containers come into play. Consider the following function, from a class in my v-to-z interface file:
void RemoveIsolated(const std::vector<global::IFoo*> spRemoveIsolated) {
… }
That takes a vector of one of the derived classes that exist in the global namespace. This worked without issue when I had only one module but now class IFoo lives in the a-to-g module -- so if I cast something to an IFoo*, it's an a-to-g.IFoo*. However, the function demands a global::IFoo*.
This seems to be a situation that could be addressed by the SWIG template mechanism. I've seen discussions in which people have had success by means of at one point (possibly in the interface file for the base class??) declaring
%template(FooVector) std::vector<global::Foo*>;
And at another point (possibly in the interface file for the derived class??):
%template () std::vector<global::Foo*>;
But my attempts to implement this have not been successful. The discussions are somewhat ambiguous, it's possible that I'm doing something wrong. Can anyone provide clarification, ideally with an example?