There are some interesting bijections that can be made. Finally, we can use ranking and unranking methods for the regular k-combinations, which are more common knowledge.
A bijection from the number of balls in each bucket to the ordered multiset of choices of buckets; for example: [3, 1, 0] --> [1, 1, 1, 2]
(three choices of 1 and one choice of 2).
A bijection from the k-subsets of {1...n}
(with repetition) to k-subsets of {1...n + k − 1}
(without repetition) by mapping {c_0, c_1...c_(k−1)}
to {c_0, c_(1+1), c_(2+2)...c_(k−1+k−1)}
(see here).
Here's some python code:
from itertools import combinations_with_replacement
def toTokens(C):
return map(lambda x: int(x), list(C))
def compositionToChoice(tokens):
result = []
for i, t in enumerate(tokens):
result = result + [i + 1] * t
return result
def bijection(C):
result = []
k = 0
for i, _c in enumerate(C):
result.append(C[i] + k)
k = k + 1
return result
compositions = ['004','013','022','031','040','103','112',
'121','130','202','211','220','301','310','400']
for c in compositions:
tokens = toTokens(c)
choices = compositionToChoice(tokens)
combination = bijection(choices)
print "%s --> %s --> %s" % (tokens, choices, combination)
Output:
"""
[0, 0, 4] --> [3, 3, 3, 3] --> [3, 4, 5, 6]
[0, 1, 3] --> [2, 3, 3, 3] --> [2, 4, 5, 6]
[0, 2, 2] --> [2, 2, 3, 3] --> [2, 3, 5, 6]
[0, 3, 1] --> [2, 2, 2, 3] --> [2, 3, 4, 6]
[0, 4, 0] --> [2, 2, 2, 2] --> [2, 3, 4, 5]
[1, 0, 3] --> [1, 3, 3, 3] --> [1, 4, 5, 6]
[1, 1, 2] --> [1, 2, 3, 3] --> [1, 3, 5, 6]
[1, 2, 1] --> [1, 2, 2, 3] --> [1, 3, 4, 6]
[1, 3, 0] --> [1, 2, 2, 2] --> [1, 3, 4, 5]
[2, 0, 2] --> [1, 1, 3, 3] --> [1, 2, 5, 6]
[2, 1, 1] --> [1, 1, 2, 3] --> [1, 2, 4, 6]
[2, 2, 0] --> [1, 1, 2, 2] --> [1, 2, 4, 5]
[3, 0, 1] --> [1, 1, 1, 3] --> [1, 2, 3, 6]
[3, 1, 0] --> [1, 1, 1, 2] --> [1, 2, 3, 5]
[4, 0, 0] --> [1, 1, 1, 1] --> [1, 2, 3, 4]
"""