I need to visually recognise some flat pictures showed to camera. There are not many of them (maybe 30) but discrimination may depend on details. The input may be partly obscured or shadowed and is suspect to lighting changes. The samples need to be updatable.
There are many existing frameworks for object detection, with the most reliable ones depending on deep learning methods (mostly convolutional networks). However, the pretrained models are not well optimised to discern flat imagery of course, and even if I start training from scratch, updating the system for new samples would take a cumbersome training process, if I am right about how this works.
Is it possible to use deep learning while still keeping the sample pool flexible?
Is there any other well known reliable method to detect images from a small sample set?