Speculating why this kind of slowdowns happen is mostly useless (I'll speculate a bit in the end anyways ;) ). First thing to do in this kind of situation would be to measure where that 300ms are used.
From database you should be able to see query times to spot if there are any slow queries causing the problems.
Also knex outputs some information about performance to console when you run it with DEBUG=knex:*
environment variable set.
Nowadays also node has builtin profiling support which you can enable by setting --inspect flag when starting node. Then you will be able to connect your node process with chrome dev tools and see where node is using its time. From that profile you will be able to see for example if database query result parsing is dominating execution time.
The best way to figure out the slowness is to isolate the slow part of the app and inspect that carefully or even post that example to stackoverflow that other people can tell you why it might be slow. General explanation like this doesn't give much tool for other to help to resolve the real issue.
Objection.js handles eager loading by doing additional WHERE IN queries and not by doing one big query with a lot of JOINS. The reason for this is that it was easier to build that way and that it shouldn't harm performance too much.
With objection you can select which eager algorithm you like to use. In most of the cases (when there are one-to-many or many-to-many relations) making multiple queries is actually more performant compared to using join, because with join amount of data explodes and transfer time + result parsing on node side will take too much time.
would it be speedier to build your own queries with Knex instead of generating them through Objection.js, in case you have a separately hosted database?
Usually no.
Speculation part:
You mentioned that Most of my api endpoints do around 5-10 eager loads.
. Most of the times when I have encountered this kind of slowness in queries the reason has been that app is querying too big chunks of data from database. When query returns for example tens of thousands rows, it will be some megabytes of JSON data. Only parsing that amount of data from database to JavaScript objects takes hundreds of milliseconds. If your queries are causing also high CPU load during that 300ms then this might be your problem.
Slow queries. Somtimes database doesn't have indexes set correctly so queries just will have to scan all the tables linearly to get the results. Checking slow queries from DB logs will help to find these. Also if getting response is taking long, but CPU load is low on node process, this might be the case.