I have a collection of 11*11*21
3D data that I want to use a 3D convnet to classify. By using gluon's dataloader with a batch size of 64, my input tensor for the network was (64L, 11L, 11L, 21L). When I tried to run the program I got the following error.
"infer_shape error. Arguments:
data: (64L, 11L, 11L, 21L)"
I then realized that 3D converts take 5D tensors as inputs and thus I am stuck on how to create a 5D tensor input for the network.
If it helps here is the code I am currently using to create my data for the convnet.
train_dataset = mx.gluon.data.ArrayDataset((noA_list+A_list), (label_noA+label_A))
test_dataset = mx.gluon.data.ArrayDataset((noA_test_list+A_list_test),(label_noA_test+label_A_test))
train_data = mx.gluon.data.DataLoader(train_dataset, batch_size= 64,shuffle= True, num_workers = cpucount)
test_data = mx.gluon.data.DataLoader(test_dataset,batch_size= 64,shuffle= True, num_workers = cpucount)