I'm trying to build a sequence to sequence model in Tensorflow , I have followed several tutorials and all is good. Untill I reached a point where I decided to remove the teacher forcing in my model . below is a sample of decoder network that I'm using :
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input,
target_sequence_length, max_summary_length,
output_layer, keep_prob):
"""
Create a decoding layer for training
:param encoder_state: Encoder State
:param dec_cell: Decoder RNN Cell
:param dec_embed_input: Decoder embedded input
:param target_sequence_length: The lengths of each sequence in the target batch
:param max_summary_length: The length of the longest sequence in the batch
:param output_layer: Function to apply the output layer
:param keep_prob: Dropout keep probability
:return: BasicDecoderOutput containing training logits and sample_id
"""
training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input,
sequence_length=target_sequence_length,
time_major=False)
training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, training_helper, encoder_state, output_layer)
training_decoder_output = tf.contrib.seq2seq.dynamic_decode(training_decoder,
impute_finished=True,
maximum_iterations=max_summary_length)[0]
return training_decoder_output
As per my understanding the TrainingHelper is doing the teacher forcing. Especially that is it taking the true output as part of its arguments. I tried to use the decoder without training help but it appears to be mandatory. I tried to set the true output to 0 but apparently the output is needed by the TrainingHelper . I have also tried to google a solution but I did not find anything related .
===================Update=============
I apologize for not mentioning this earlier but I tried using GreedyEmbeddingHelper as well .The model runs fine a couple of iterations and then starts throwing a run time error . it appears that the GreedyEmbeddingHelper starts predicting output different that the expectected shape . Below is my function when using the GreedyEmbeddingHelper
def decoding_layer_train(encoder_state, dec_cell, dec_embeddings,
target_sequence_length, max_summary_length,
output_layer, keep_prob):
"""
Create a decoding layer for training
:param encoder_state: Encoder State
:param dec_cell: Decoder RNN Cell
:param dec_embed_input: Decoder embedded input
:param target_sequence_length: The lengths of each sequence in the target batch
:param max_summary_length: The length of the longest sequence in the batch
:param output_layer: Function to apply the output layer
:param keep_prob: Dropout keep probability
:return: BasicDecoderOutput containing training logits and sample_id
"""
start_tokens = tf.tile(tf.constant([target_vocab_to_int['<GO>']], dtype=tf.int32), [batch_size], name='start_tokens')
training_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings,
start_tokens,
target_vocab_to_int['<EOS>'])
training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, training_helper, encoder_state, output_layer)
training_decoder_output = tf.contrib.seq2seq.dynamic_decode(training_decoder,
impute_finished=True,
maximum_iterations=max_summary_length)[0]
return training_decoder_output
this is a sample of the error that gets thrown after a coupe of training iterations :
Ok
Epoch 0 Batch 5/91 - Train Accuracy: 0.4347, Validation Accuracy: 0.3557, Loss: 2.8656
++++Epoch 0 Batch 5/91 - Train WER: 1.0000, Validation WER: 1.0000
Epoch 0 Batch 10/91 - Train Accuracy: 0.4050, Validation Accuracy: 0.3864, Loss: 2.6347
++++Epoch 0 Batch 10/91 - Train WER: 1.0000, Validation WER: 1.0000
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-115-1d2a9495ad42> in <module>()
57 target_sequence_length: targets_lengths,
58 source_sequence_length: sources_lengths,
---> 59 keep_prob: keep_probability})
60
61
/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
887 try:
888 result = self._run(None, fetches, feed_dict, options_ptr,
--> 889 run_metadata_ptr)
890 if run_metadata:
891 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
1116 if final_fetches or final_targets or (handle and feed_dict_tensor):
1117 results = self._do_run(handle, final_targets, final_fetches,
-> 1118 feed_dict_tensor, options, run_metadata)
1119 else:
1120 results = []
/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1313 if handle is None:
1314 return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1315 options, run_metadata)
1316 else:
1317 return self._do_call(_prun_fn, self._session, handle, feeds, fetches)
/Users/alsulaimi/Documents/AI/Tensorflow-make/workspace/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
1332 except KeyError:
1333 pass
-> 1334 raise type(e)(node_def, op, message)
1335
1336 def _extend_graph(self):
InvalidArgumentError: logits and labels must have the same first dimension, got logits shape [1100,78] and labels shape [1400]
I'm not sure but I guess the GreedyEmbeddingHepler should not be used for training. , I would appreciate your help and thoughts on how to stop the teacher forcing.
thank you.