The following full code could compare speed of fast inverse square root with 1/sqrt(). According to this sentence in wikipedia, (i.e. The algorithm was approximately four times faster than computing the square root with another method and calculating the reciprocal via floating point division.)
But here is why I am here: it is slower than 1/sqrt(). something wrong in my code? please.
#include <stdio.h>
#include <time.h>
#include <math.h>
float FastInvSqrt (float number);
int
main ()
{
float x = 1.0e+100;
int N = 100000000;
int i = 0;
clock_t start2 = clock ();
do
{
float z = 1.0 / sqrt (x);
i++;
}
while (i < N);
clock_t end2 = clock ();
double time2 = (end2 - start2) / (double) CLOCKS_PER_SEC;
printf ("1/sqrt() spends %13f sec.\n\n", time2);
i = 0;
clock_t start1 = clock ();
do
{
float y = FastInvSqrt (x);
i++;
}
while (i < N);
clock_t end1 = clock ();
double time1 = (end1 - start1) / (double) CLOCKS_PER_SEC;
printf ("FastInvSqrt() spends %f sec.\n\n", time1);
printf ("fast inverse square root is faster %f times than 1/sqrt().\n", time2/time1);
return 0;
}
float
FastInvSqrt (float x)
{
float xhalf = 0.5F * x;
int i = *(int *) &x; // store floating-point bits in integer
i = 0x5f3759df - (i >> 1); // initial guess for Newton's method
x = *(float *) &i; // convert new bits into float
x = x * (1.5 - xhalf * x * x); // One round of Newton's method
//x = x * (1.5 - xhalf * x * x); // One round of Newton's method
//x = x * (1.5 - xhalf * x * x); // One round of Newton's method
//x = x * (1.5 - xhalf * x * x); // One round of Newton's method
return x;
}
The result is as follows:
1/sqrt() spends 0.850000 sec.
FastInvSqrt() spends 0.960000 sec.
fast inverse square root is faster 0.885417 times than 1/sqrt().