I understand that mse will treat both actual - predict, and predict - actual the same way. I want to write a custom loss function such that the penalty of predict > actual is more than actual > predict Say I will have 2x more penalty for being predict > actual. How would I implement such function
import numpy as np
from keras.models import Model
from keras.layers import Input
import keras.backend as K
from keras.engine.topology import Layer
from keras.layers.core import Dense
from keras import objectives
def create_model():
# define the size
input_size = 6
hidden_size = 15;
# definte the model
model = Sequential()
model.add(Dense(input_size, input_dim=input_size, kernel_initializer='normal', activation='relu'))
model.add(Dense(hidden_size, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# mse is used as loss for the optimiser to converge quickly
# mae is something you can quantify the manitude
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
early_stop = EarlyStopping(monitor='val_loss', patience=20)
history = model.fit(train_features, train_label, epochs=200, validation_split=0.2, verbose=0, shuffle=True)
predvalue = model.predict(test_features).flatten() * 100
How do I implement such loss function?