sleep()
and signals
sleep()
should not prevent the signal from being caught and the signal handler being executed. From the manpage for sleep()
(emphasis mine):
sleep() causes the calling thread to sleep either until the number of real-time seconds specified in seconds have elapsed or until a signal arrives which is not ignored.
Take the following example ...
#include <signal.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
static volatile sig_atomic_t flag = 0;
static void sig_stop(int signum) { flag = 1; }
int main(void) {
int secs_remaining = 0;
signal(SIGTERM, sig_stop);
while (!flag) {
printf("Sleeping at time %d\n", time(NULL));
secs_remaining = sleep(5);
}
printf(
"Flag raised. Exiting at time %d. sleep() was interrupted %d seconds "
"early ...\n",
time(NULL), secs_remaining);
return 0;
}
Note that - in the case where it was interrupted by a signal - sleep()
returns the number of seconds left to sleep. E.g., if it is interrupted 3 seconds early it will return 3
. It will return 0
if it is not interrupted.
Compile as gcc -o test test.c
and run. Then from another terminal run
pkill -15 test
You will see output similar to the following ...
Sleeping at time 1532273709
Flag raised. Exiting at time 1532273711. sleep() was interrupted 2 seconds early ...
By the way ... sleep(x)
sleeps for x
seconds - not minutes.
signal()
vs sigaction()
Due to portability issues associated with signal()
, it is often recommended to use sigaction()
instead. The use of sigaction()
would be something like the following.
int main(void) {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = sig_stop;
if (sigaction(SIGTERM, &sa, NULL) == -1) {
perror("sigaction");
return 1;
}
// Etc.
}
As you can see the usage of sigaction()
is a little more verbose than that of signal()
. Perhaps that's why people still sometimes use signal()
.