I would like to calculate simple summary metrics for subsets of certain columns in a data frame, where the subsets are based on information in other columns of the same data frame. Let me illustrate:
colA <- c(NA,2,3,NA,NA,3,9,5,6,1)
colB <- c(9,3,NA,2,2,4,6,1,9,9)
colC <- c(NA,NA,5,7,3,9,8,1,2,3)
colAA <- c(NA,NA,6,NA,NA,NA,1,7,9,4)
colBB <- c(NA,2,NA,7,8,NA,2,7,9,4)
colCC <- c(NA,NA,3,7,5,8,9,9,NA,3)
df <- data.frame(colA,colB,colC,colAA,colBB,colCC)
> df
colA colB colC colAA colBB colCC
1 NA 9 NA NA NA NA
2 2 3 NA NA 2 NA
3 3 NA 5 6 NA 3
4 NA 2 7 NA 7 7
5 NA 2 3 NA 8 5
6 3 4 9 NA NA 8
7 9 6 8 1 2 9
8 5 1 1 7 7 9
9 6 9 2 9 9 NA
10 1 9 3 4 4 3
Here colAA should be subsetted by colA so that rows containing NAs in colA are removed:
> df1 <- subset(df, !is.na(colA))
> df1
colA colB colC colAA colBB colCC
2 2 3 NA NA 2 NA
3 3 NA 5 6 NA 3
6 3 4 9 NA NA 8
7 9 6 8 1 2 9
8 5 1 1 7 7 9
9 6 9 2 9 9 NA
10 1 9 3 4 4 3
Now I would like to calculate e.g. column length and percentage of non-NA values within the column:
> length(df1$colAA)
[1] 7
> (nrow(subset(df1, !is.na(colAA)))/length(df1$colAA))*100
[1] 71.42857
In an ideal world, the output would be written to another data frame, e.g.:
cat n perc_n
1 colAA 7 71
2 colBB 9 78
3 colCC 8 88
Any way to achieve this for all columns in a slighty more elegant/efficient manner? Any suggestions will be much appreciated!