I have a working implementation of this technique for view frustum culling of instanced geometry. The gist of the technique is that we use a vertex shader to check if the bounds of an object lie within the view frustum, and if they do we output the position of that object, using a transform feedback buffer and a geometry shader, to a texture. We can then, during an actual rendering pass, use that texture, along with a query of how many positions we emitted, to acquire the relevant position data for the object we're rendering, and number of draws to specify in our call to glDrawElementsInstanced. One difference between what I do, and what the article does, is that I emit a full transformation matrix, rather than a simple position vector, to the texture, but I doubt that has any bearing on my problem.
The actual problem: Currently I have this setup so that, for each object type being rendered (i.e. tree, box, rock, whatever), the actual rendering pass follows immediately upon the frustum cull rendering pass. This works, and gives the intended results. What I want to do instead, however, is to go over all my drawcommands and do all the frustum culling for the various objects first, and only thereafter do all the actual rendering, to avoid a bunch of unnecessary state changes (i.e. switching back and forth between shader programs). When I do this, however, I encounter the problem that previously established textures -- the ones I use for reading positions from during the actual rendering passes -- all seem to be overwritten by the latest call to the frustum culling function, meaning that all textures established seemingly contain only the position information from the last frustum cull call.
For example: I render, in order, 4 trees, 10 boxes and 3 rocks, and what I will see instead is a tree, a box, and a rock, at all the (three) positions where I would expect only the 3 rocks to be. I cannot for the life of me figure out why this is, because I quite clearly bind new buffers and textures to the TRANSFORM_FEEDBACK_BUFFER every time I call the function. Why are the previously used textures still receiving the new data from the latest call?
Code, in C, for the frustum culling function:
void fcullidraw(drawcommand *tar) {
/* printf("Fculling %s\n", tar->res->name); */
mesh *rmesh = &tar->res->amod->meshes[0];
/* glDeleteTextures(1, &rmesh->ctex); */
if(rmesh->ctbuf == 0)
glGenBuffers(1, &rmesh->ctbuf);
glBindBuffer(GL_TEXTURE_BUFFER, rmesh->ctbuf);
glBufferData(GL_TEXTURE_BUFFER, sizeof(instancedata) * tar->nodraws, NULL, GL_DYNAMIC_COPY);
if(rmesh->ctex == 0)
glGenTextures(1, &rmesh->ctex);
glBindTexture(GL_TEXTURE_BUFFER, rmesh->ctex);
glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA32F, rmesh->ctbuf);
if(rmesh->cquery == 0)
glGenQueries(1, &rmesh->cquery);
checkactiveshader(tar->tar, findshader("icull"));
glEnable(GL_RASTERIZER_DISCARD);
glUniform1f(activeshader->radius, tar->res->amesh->bbox.radius);
glUniform3fv(activeshader->extent, 1, (const GLfloat*)&tar->res->amesh->bbox.ext);
glUniform3fv(activeshader->cp, 1, (const GLfloat*)&tar->res->amesh->bbox.cp);
glBindVertexArray(tar->res->amod->meshes[0].vao);
glBindBuffer(GL_ARRAY_BUFFER, tar->res->amod->meshes[0].posarray);
glBufferData(GL_ARRAY_BUFFER, sizeof(mat4_t) * tar->nodraws, tar->posarray, GL_DYNAMIC_DRAW);
glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, rmesh->ctbuf);
glBeginTransformFeedback(GL_POINTS);
glBeginQuery(GL_PRIMITIVES_GENERATED, rmesh->cquery);
glDrawArrays(GL_POINTS, 0, tar->nodraws);
glEndQuery(GL_PRIMITIVES_GENERATED);
glEndTransformFeedback();
glDisable(GL_RASTERIZER_DISCARD);
glGetQueryObjectuiv(rmesh->cquery, GL_QUERY_RESULT, &rmesh->visibleinstances);
}
tar and rmesh obviously vary between each call to this function. Do note that I have left in a few lines of comments here containing code to delete the buffers and textures between each rendering cycle, rather than simply overwriting them, but using that code instead has no effect on the error mode.
I'm stumped. I feel that the textures and buffers are well defined and clearly kept separate, so I do not understand how the textures from previous calls to fcullidraw are somehow still bound to and being overwritten by the TransformFeedback, if that is indeed what is happening, and it certainly seems to be, because the earlier objects will read in the entire transformation matrix of the rock quite neatly, with the "right" rotation, translation, and everything.
The article linked does do the operations in the order I want to do them -- i.e. first repeated frustum culls, and then repeated rendering -- and I'm not sure I see what I do differently. Might be some small and obvious thing, and I might be an idiot, but in that case I'd love to know why and how I am that.
EDIT: I pushed on and updated my implementation with a refinement of the original technique, suggested here, which gets rid of the writing-to-texture method altogether, in favor of instead simply writing to a buffer bound to the VAO, and set to update once per rendered instance with a VertexAttribDivisor. This method looks at lot cleaner on the whole, and incidentally had the additional side effect of not having my original problem at all, as I'm no longer writing to and uploading textures. This is, thus, no longer a practical problem for me, but the answer to the theoretical question does still elude me, so if anyone has ideas I'm still all ears.