I am using a source code file named SRGAN. This will 4x upscale photos. https://github.com/tensorlayer/srgan
However, I wanted to 2x upscale the photos. The developer asked to remove one subpixel as a way to do that. https://github.com/tensorlayer/srgan/issues/20
So I followed the way he gave.
def SRGAN_g(t_image, is_train=False, reuse=False):
""" Generator in Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
feature maps (n) and stride (s) feature maps (n) and stride (s)
"""
w_init = tf.random_normal_initializer(stddev=0.02)
b_init = None # tf.constant_initializer(value=0.0)
g_init = tf.random_normal_initializer(1., 0.02)
with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
n = InputLayer(t_image, name='in')
n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
temp = n
# B residual blocks
for i in range(16):
nn = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c1/%s' % i)
nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
n = nn
n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
n = ElementwiseLayer([n, temp], tf.add, name='add3')
# B residual blacks end
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/1')
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/2')
n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/2')
n = Conv2d(n, 3, (1, 1), (1, 1), act=tf.nn.tanh, padding='SAME', W_init=w_init, name='out')
return n
This is the original source code. and
def SRGAN_g(t_image, is_train=False, reuse=False):
""" Generator in Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
feature maps (n) and stride (s) feature maps (n) and stride (s)
"""
w_init = tf.random_normal_initializer(stddev=0.02)
b_init = None # tf.constant_initializer(value=0.0)
g_init = tf.random_normal_initializer(1., 0.02)
with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
n = InputLayer(t_image, name='in')
n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
temp = n
# B residual blocks
for i in range(16):
nn = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c1/%s' % i)
nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
n = nn
n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
n = ElementwiseLayer([n, temp], tf.add, name='add3')
# B residual blacks end
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/1')
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/2')
n = Conv2d(n, 3, (1, 1), (1, 1), act=tf.nn.tanh, padding='SAME', W_init=w_init, name='out')
return n
I deleted one subpixel block as he said. Then the following error occurred :
ValueError: Dimension 2 in both shapes must be equal, but are 256 and 64. Shapes are [1,1,256,3] and [1,1,64,3]. for 'Assign_171' (op: 'Assign') with input shapes: [1,1,256,3], [1,1,64,3].
How do I resolve this error?