I use transfer learning with Resnet50. I create a new model out of the pretrained model provided by Keras (the 'imagenet').
After training my new model, I save it as following:
# Save the Siamese Network architecture
siamese_model_json = siamese_network.to_json()
with open("saved_model/siamese_network_arch.json", "w") as json_file:
json_file.write(siamese_model_json)
# save the Siamese Network model weights
siamese_network.save_weights('saved_model/siamese_model_weights.h5')
And later, I reload it as following to make some predictions:
json_file = open('saved_model/siamese_network_arch.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
siamese_network = model_from_json(loaded_model_json)
# load weights into new model
siamese_network.load_weights('saved_model/siamese_model_weights.h5')
Then I check if the weights look reasonable as following (from 1 of the layers):
print("bn3d_branch2c:\n",
siamese_network.get_layer('model_1').get_layer('bn3d_branch2c').get_weights())
If I train my network for 1 epoch only, I see reasonable values there..
But if I train my model for 18 epochs (which takes 5-6 hours as I have a very slow computer), I just see NaN values as following:
bn3d_branch2c:
[array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
...
What is the trick here?
ADDENDUM 1:
Here is how I create my model.
Here, I have a triplet_loss function that I will need later on.
def triplet_loss(inputs, dist='euclidean', margin='maxplus'):
anchor, positive, negative = inputs
positive_distance = K.square(anchor - positive)
negative_distance = K.square(anchor - negative)
if dist == 'euclidean':
positive_distance = K.sqrt(K.sum(positive_distance, axis=-1, keepdims=True))
negative_distance = K.sqrt(K.sum(negative_distance, axis=-1, keepdims=True))
elif dist == 'sqeuclidean':
positive_distance = K.sum(positive_distance, axis=-1, keepdims=True)
negative_distance = K.sum(negative_distance, axis=-1, keepdims=True)
loss = positive_distance - negative_distance
if margin == 'maxplus':
loss = K.maximum(0.0, 2 + loss)
elif margin == 'softplus':
loss = K.log(1 + K.exp(loss))
returned_loss = K.mean(loss)
return returned_loss
And here is how I construct my model from start to end. I give the complete code to give the exact picture.
model = ResNet50(weights='imagenet')
# Remove the last layer (Needed to later be able to create the Siamese Network model)
model.layers.pop()
# First freeze all layers of ResNet50. Transfer Learning to be applied.
for layer in model.layers:
layer.trainable = False
# All Batch Normalization layers still need to be trainable so that the "mean"
# and "standard deviation (std)" params can be updated with the new training data
model.get_layer('bn_conv1').trainable = True
model.get_layer('bn2a_branch2a').trainable = True
model.get_layer('bn2a_branch2b').trainable = True
model.get_layer('bn2a_branch2c').trainable = True
model.get_layer('bn2a_branch1').trainable = True
model.get_layer('bn2b_branch2a').trainable = True
model.get_layer('bn2b_branch2b').trainable = True
model.get_layer('bn2b_branch2c').trainable = True
model.get_layer('bn2c_branch2a').trainable = True
model.get_layer('bn2c_branch2b').trainable = True
model.get_layer('bn2c_branch2c').trainable = True
model.get_layer('bn3a_branch2a').trainable = True
model.get_layer('bn3a_branch2b').trainable = True
model.get_layer('bn3a_branch2c').trainable = True
model.get_layer('bn3a_branch1').trainable = True
model.get_layer('bn3b_branch2a').trainable = True
model.get_layer('bn3b_branch2b').trainable = True
model.get_layer('bn3b_branch2c').trainable = True
model.get_layer('bn3c_branch2a').trainable = True
model.get_layer('bn3c_branch2b').trainable = True
model.get_layer('bn3c_branch2c').trainable = True
model.get_layer('bn3d_branch2a').trainable = True
model.get_layer('bn3d_branch2b').trainable = True
model.get_layer('bn3d_branch2c').trainable = True
model.get_layer('bn4a_branch2a').trainable = True
model.get_layer('bn4a_branch2b').trainable = True
model.get_layer('bn4a_branch2c').trainable = True
model.get_layer('bn4a_branch1').trainable = True
model.get_layer('bn4b_branch2a').trainable = True
model.get_layer('bn4b_branch2b').trainable = True
model.get_layer('bn4b_branch2c').trainable = True
model.get_layer('bn4c_branch2a').trainable = True
model.get_layer('bn4c_branch2b').trainable = True
model.get_layer('bn4c_branch2c').trainable = True
model.get_layer('bn4d_branch2a').trainable = True
model.get_layer('bn4d_branch2b').trainable = True
model.get_layer('bn4d_branch2c').trainable = True
model.get_layer('bn4e_branch2a').trainable = True
model.get_layer('bn4e_branch2b').trainable = True
model.get_layer('bn4e_branch2c').trainable = True
model.get_layer('bn4f_branch2a').trainable = True
model.get_layer('bn4f_branch2b').trainable = True
model.get_layer('bn4f_branch2c').trainable = True
model.get_layer('bn5a_branch2a').trainable = True
model.get_layer('bn5a_branch2b').trainable = True
model.get_layer('bn5a_branch2c').trainable = True
model.get_layer('bn5a_branch1').trainable = True
model.get_layer('bn5b_branch2a').trainable = True
model.get_layer('bn5b_branch2b').trainable = True
model.get_layer('bn5b_branch2c').trainable = True
model.get_layer('bn5c_branch2a').trainable = True
model.get_layer('bn5c_branch2b').trainable = True
model.get_layer('bn5c_branch2c').trainable = True
# Used when compiling the siamese network
def identity_loss(y_true, y_pred):
return K.mean(y_pred - 0 * y_true)
# Create the siamese network
x = model.get_layer('flatten_1').output # layer 'flatten_1' is the last layer of the model
model_out = Dense(128, activation='relu', name='model_out')(x)
model_out = Lambda(lambda x: K.l2_normalize(x,axis=-1))(model_out)
new_model = Model(inputs=model.input, outputs=model_out)
anchor_input = Input(shape=(224, 224, 3), name='anchor_input')
pos_input = Input(shape=(224, 224, 3), name='pos_input')
neg_input = Input(shape=(224, 224, 3), name='neg_input')
encoding_anchor = new_model(anchor_input)
encoding_pos = new_model(pos_input)
encoding_neg = new_model(neg_input)
loss = Lambda(triplet_loss)([encoding_anchor, encoding_pos, encoding_neg])
siamese_network = Model(inputs = [anchor_input, pos_input, neg_input],
outputs = loss) # Note that the output of the model is the
# return value from the triplet_loss function above
siamese_network.compile(optimizer=Adam(lr=.0001), loss=identity_loss)
One thing to notice is that I make all batch normalization layers "trainable" so that BN related params can be updated with my training data. This creates a lot of lines but I could not find a shorter solution.