I am using keras to build a multi-output classification model. My dataset is such as
[x1,x2,x3,x4,y1,y2,y3]
x1,x2,x3 are the features, and y1,y2,y3 are the labels, the y1,y2,y3 are multi-classes.
And I already built a model (I ingore some hidden layers):
def baseline_model(input_dim=23,output_dim=3):
model_in = Input(shape=(input_dim,))
model = Dense(input_dim*5,kernel_initializer='uniform',input_dim=input_dim)(model_in)
model = Activation(activation='relu')(model)
model = Dropout(0.5)(model)
...................
model = Dense(output_dim,kernel_initializer='uniform')(model)
model = Activation(activation='sigmoid')(model)
model = Model(model_in,model)
model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])
return model
And then I try to use the method of keras to make it support classification:
estimator = KerasClassifier(build_fn=baseline_model)
estimator.fit()
estimator.predict(df[0:10])
But I found that the result is not multi-output, only one dimension is output.
[0,0,0,0,0,0,0,0,0,0]
So for the multi-output classification problem, we can not use KerasClassifier function to learn it?