I'm trying to implement "F. The convolution method" (section 2.2):
from Fast algorithms for Taylor shifts and certain difference equations (at the bottom, or here):
from math import factorial
def convolve(f, h):
g = [0] * (len(f) + len(h) - 1)
for hindex, hval in enumerate(h):
for findex, fval in enumerate(f):
g[hindex + findex] += fval * hval
return g
def shift(f, a):
n = len(f) - 1
u = [factorial(i)*c for i, c in enumerate(f)]
v = [factorial(n)*a**i//factorial(n-i) for i in range(n + 1)]
g = convolve(u, v)
g = [c//(factorial(n)*factorial(i)) for i, c in enumerate(g)]
return g
f = [1, 2, 3, -4, 5, 6, -7, 8, 9]
print(shift(f, 1))
But I get only zeros, whereas the correct result should be:
[1, 10, 45, 112, 170, 172, 116, 52, 23]
Please, does anyone know what am I doing wrong here?