My dataset looks something like this:
df <- data.frame(compound = c("alanine ", "arginine", "asparagine", "aspartate"))
df <- matrix(rnorm(12*4), ncol = 12)
colnames(df) <- c("AC-1", "AC-2", "AC-3", "AM-1", "AM-2", "AM-3", "SC-1", "SC-2", "SC-3", "SM-1", "SM-2", "SM-3")
df <- data.frame(compound = c("alanine ", "arginine", "asparagine", "aspartate"), df)
df
compound AC.1 AC.2 AC.3 AM.1 AM.2 AM.3 SC.1 SC.2 SC.3 SM.1
1 alanine 1.18362683 -2.03779314 -0.7217692 -1.7569264 -0.8381042 0.06866567 0.2327702 -1.1558879 1.2077454 0.437707310
2 arginine -0.19610110 0.05361113 0.6478384 -0.1768597 0.5905398 -0.67945600 -0.2221109 1.4032349 0.2387620 0.598236199
3 asparagine 0.02540509 0.47880021 -0.1395198 0.8394257 1.9046667 0.31175358 -0.5626059 0.3596091 -1.0963363 -1.004673116
4 aspartate -1.36397906 0.91380826 2.0630076 -0.6817453 -0.2713498 -2.01074098 1.4619707 -0.7257269 0.2851122 -0.007027878
I want to perform a t-test for each row (compound) on the columns [2:4] as one, and [5:7] as one, and store all the p-values. Basically see if there is a difference between the AC group and AM group for each compound.
I am aware there is another topic with this however I couldn't find a viable solution for my problem.
PS. my real dataset has about 35000 rows (maybe it needs a different solution than only 4 rows)