everyone,
I have a question about how to modify the pre-trained VGG16 network in Keras. I try to remove the max-pooling layers at the end the last three convolutional layers and add the batch normalization layer at the end of each convolutional layer. At the same time, I want to keep the parameters. This means that the whole modification process will not only include removing some middle layers, adding some new layers, but also concatenating the modified layers with the rest layers.
I'm still very new in Keras. The only way I can find is as shown in Removing then Inserting a New Middle Layer in a Keras Model
So the codes I edited are as below:
from keras import applications
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers.normalization import BatchNormalization
vgg_model = applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(160, 80, 3))
# Disassemble layers
layers = [l for l in vgg_model.layers]
# Defining new convolutional layer.
# Important: the number of filters should be the same!
# Note: the receiptive field of two 3x3 convolutions is 5x5.
layer_dict = dict([(layer.name, layer) for layer in vgg_model.layers])
x = layer_dict['block3_conv3'].output
for i in range(11, len(layers)-5):
# layers[i].trainable = False
x = layers[i](x)
for j in range(15, len(layers)-1):
# layers[j].trainable = False
x = layers[j](x)
x = Conv2D(filters=128, kernel_size=(1, 1))(x)
x = BatchNormalization()(x)
x = Conv2D(filters=128, kernel_size=(1, 1))(x)
x = BatchNormalization()(x)
x = Conv2D(filters=128, kernel_size=(1, 1))(x)
x = BatchNormalization()(x)
x = Flatten()(x)
x = Dense(50, activation='softmax')(x)
custom_model = Model(inputs=vgg_model.input, outputs=x)
for layer in custom_model.layers[:16]:
layer.trainable = False
custom_model.summary()
However, the output shape of the convolutional layers in block 4 and block 5 are multiple. I tried to correct it by adding a layer MaxPool2D(batch_size=(1,1), stride=none), but the output shape is still multiple. Just like this:
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 160, 80, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 160, 80, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 160, 80, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 80, 40, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 80, 40, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 80, 40, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 40, 20, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 40, 20, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 40, 20, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 40, 20, 256) 590080
_________________________________________________________________
block4_conv1 (Conv2D) multiple 1180160
_________________________________________________________________
block4_conv2 (Conv2D) multiple 2359808
_________________________________________________________________
block4_conv3 (Conv2D) multiple 2359808
_________________________________________________________________
block5_conv1 (Conv2D) multiple 2359808
_________________________________________________________________
block5_conv2 (Conv2D) multiple 2359808
_________________________________________________________________
block5_conv3 (Conv2D) multiple 2359808
_________________________________________________________________
conv2d_1 (Conv2D) (None, 40, 20, 128) 65664
_________________________________________________________________
batch_normalization_1 (Batch (None, 40, 20, 128) 512
_________________________________________________________________
conv2d_2 (Conv2D) (None, 40, 20, 128) 16512
_________________________________________________________________
batch_normalization_2 (Batch (None, 40, 20, 128) 512
_________________________________________________________________
conv2d_3 (Conv2D) (None, 40, 20, 128) 16512
_________________________________________________________________
batch_normalization_3 (Batch (None, 40, 20, 128) 512
_________________________________________________________________
flatten_1 (Flatten) (None, 102400) 0
_________________________________________________________________
dense_1 (Dense) (None, 50) 5120050
=================================================================
Total params: 19,934,962
Trainable params: 5,219,506
Non-trainable params: 14,715,456
_________________________________________________________________
Can anyone provide some suggestions about how to reach my goal?
Thanks very much.