I am trying to implement a simple KNN technique in Python where I am using minute by minute stock price data, and using my x variables as Open, Close and Volume data to predict the next minute Open price. My code is as below:-
import numpy as np
import pandas as pd
import scipy
import matplotlib.pyplot as plt
from pylab import rcParams
import urllib
import sklearn
from sklearn.neighbors import KNeighborsRegressor
from sklearn import neighbors
from sklearn import preprocessing
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from googlefinance.client import get_price_data, get_prices_data, get_prices_time_data
import copy
np.set_printoptions(precision = 4, suppress = True)
rcParams['figure.figsize']=7,4
plt.style.use('seaborn-whitegrid')
param = {'q':"DJUSBK", 'i':"60",'x':"INDEXDJX",'p':"1Y"} # Dow Joes Banks
djusbk = get_price_data(param)
ticker_list=['ASB','BXS','BAC','BOH','BKU'] # 5 stocks from the Dow Jones Bank Index
ticker_dict = {}
for i in ticker_list :
param = {'q':i, 'i':"60",'x':"NYSE",'p':"1Y"}
df = get_price_data(param)
x=i
ticker_dict[x] = df
asb = copy.deepcopy(ticker_dict['ASB'])
asb_prime = pd.DataFrame(asb['Open'])
asb_prime['Close'] = asb['Close']
asb_prime['Volume'] = asb['Volume']
asb_prime_copy = copy.deepcopy(asb_prime)
# Splitting your data into test and training data sets
X_prime = asb_prime_copy.ix[:,(0,1,2)].values
asb_open_next = pd.DataFrame(copy.deepcopy(asb['Open']))
asb_open_next.drop(asb_open_next.index[:1], inplace=True)
asb_prime_copy= asb_prime_copy[:-1]
X_prime = asb_prime_copy.ix[:,(0,1,2)].values
y = asb_open_next.ix[:,(0)].values
X = preprocessing.scale(X_prime)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.5,random_state = 17)
#Building and Training Model with Training Data
clf = neighbors.KNeighborsRegressor()
clf.fit(X_train,y_train)
print(clf)
# Evaluating the model's predictions against the test dataset
y_expect=y_test
y_pred= clf.predict(X_test)
print(metrics.classification_report(y_expect,y_pred))
At the very end I am getting en error. Not sure why? I am using Python 3.x
File "C:\Users\gg\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py", line 97, in unique_labels
raise ValueError("Unknown label type: %s" % repr(ys))
ValueError: Unknown label type: (array([ 28.2 , 28.375, 28.325, ..., 28.075, 28.275, 28.1 ]), array([ 28.23 , 28.4 , 28.32 , ..., 28.055, 28.28 , 28.08 ]))
As suggested in the below answer KNeighborsClassifier() was updated with KNeighborsRegressor() and that had solved the previous issue