I have one pandas Dataframe like below:
name,year
AAA,2015-11-02 22:00:00
AAA,2015-11-02 23:00:00
AAA,2015-11-03 00:00:00
AAA,2015-11-03 01:00:00
AAA,2015-11-03 02:00:00
AAA,2015-11-03 05:00:00
ZZZ,2015-09-01 00:00:00
ZZZ,2015-11-01 01:00:00
ZZZ,2015-11-01 07:00:00
ZZZ,2015-11-01 08:00:00
ZZZ,2015-11-01 09:00:00
ZZZ,2015-11-01 12:00:00
I want to find out the gaps available in the year column of the dataframe with respect to particular name. For example,
- AAA name has gap ahead "2015-11-03 02:00:00" date with 2 hours.
- ZZZ name has gap ahead "2015-11-01 01:00:00" date with 5 hours.
- ZZZ name has gap ahead "2015-11-01 09:00:00" date with 2 hours.
I want to generate two csv files with contents:
CSV-1:
name,year
AAA,2015-11-02 22:00:00,0
AAA,2015-11-02 23:00:00,0
AAA,2015-11-03 00:00:00,0
AAA,2015-11-03 01:00:00,0
AAA,2015-11-03 02:00:00,2
AAA,2015-11-03 05:00:00,0
ZZZ,2015-09-01 00:00:00,0
ZZZ,2015-11-01 01:00:00,5
ZZZ,2015-11-01 07:00:00,0
ZZZ,2015-11-01 08:00:00,0
ZZZ,2015-11-01 09:00:00,2
ZZZ,2015-11-01 12:00:00,0
CSV-2:
name,prev_year,next_year,gaps
AAA,2015-11-03 02:00:00,2015-11-03 05:00:00,2015-11-03 03:00:00
AAA,2015-11-03 02:00:00,2015-11-03 05:00:00,2015-11-03 04:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 02:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 03:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 04:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 05:00:00
ZZZ,2015-11-01 01:00:00,2015-11-01 07:00:00,2015-11-01 06:00:00
ZZZ,2015-11-01 09:00:00,2015-11-01 12:00:00,2015-11-01 10:00:00
ZZZ,2015-11-01 09:00:00,2015-11-01 12:00:00,2015-11-01 11:00:00
I tried like below:
df['year'] = pd.to_datetime(df['year'], format='%Y-%m-%d %H:%M:%S')
mask = df.groupby("name").year.diff() > pd.Timedelta('0 days 01:00:00')