6
model = sklearn.model_selection.GridSearchCV(
        estimator = est, 
        param_grid = param_grid,
        scoring = 'precision',
        verbose = 1,
        n_jobs = 1,
        iid = True,
        cv = 3)

In sklearn.metrics.precision_score(y, y_pred,pos_label=[0]), I can specify the positive label, how can I specify this in GridSearchCV too?

If there is no way to specify, when using custom scoring, how can I define?

I have tried this:

custom_score = make_scorer(precision_score(y, y_pred,pos_label=[0]),  
                          greater_is_better=True)  

but I got error:

NameError: name 'y_pred' is not defined
Sh. Pavel
  • 1,584
  • 15
  • 28
Hachiko
  • 83
  • 2
  • 5

1 Answers1

9

Reading the docs, you can pass any kwargs into make_scorer and they will be automatically passed into the score_func callable.

from sklearn.metrics import precision_score, make_scorer
custom_scorer = make_scorer(precision_score, greater_is_better=True,  pos_label=0)

Then you pass this custom_scorer to GridSearchCV:

gs = GridSearchCV(est, ..., scoring=custom_scorer)
Jan K
  • 4,040
  • 1
  • 15
  • 16