To fit a hyperbolic function I am trying to use the following code:
import numpy as np
from scipy.optimize import curve_fit
def hyperbola(x, s_1, s_2, o_x, o_y, c):
# x > Input x values
# s_1 > slope of line 1
# s_2 > slope of line 2
# o_x > x offset of crossing of asymptotes
# o_y > y offset of crossing of asymptotes
# c > curvature of hyperbola
b_2 = (s_1 + s_2) / 2
b_1 = (s_2 - s_1) / 2
return o_y + b_1 * (x - o_x) + b_2 * np.sqrt((x - o_x) ** 2 + c ** 2 / 4)
min_fit = np.array([-3.0, 0.0, -2.0, -10.0, 0.0])
max_fit = np.array([0.0, 3.0, 3.0, 0.0, 10.0])
guess = np.array([-2.5/3.0, 4/3.0, 1.0, -4.0, 0.5])
vars, covariance = curve_fit(f=hyperbola, xdata=n_step, ydata=n_mean, p0=guess, bounds=(min_fit, max_fit))
Where n_step and n_mean are measurement values generated earlier on. The code runs fine and gives no error message, but it only returns the initial guess with a very small change. Also, the covariance matrix contains only zeros. I tried to do the same fit with a better initial guess, but that does not have any influence. Further, I plotted the exact same function with the initial guess as input and that gives me indeed a function which is close to the real values. Does anyone know where I make a mistake here? Or do I use the wrong function to make my fit?