__global__ void sum(const float * __restrict__ indata, float * __restrict__ outdata) {
unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
// --- Specialize BlockReduce for type float.
typedef cub::BlockReduce<float, BLOCKSIZE> BlockReduceT;
// --- Allocate temporary storage in shared memory
__shared__ typename BlockReduceT::TempStorage temp_storage;
float result;
if(tid < N) result = BlockReduceT(temp_storage).Sum(indata[tid]);
// --- Update block reduction value
if(threadIdx.x == 0) outdata[blockIdx.x] = result;
return;
}
I have tested the reduction sum(as shown in above code snippet) with cuda cub successfully, I want to perform the inner product of two vectors based on this code. But I have some confusions about it:
We need two input vectors for the inner_product, need I to conduct a component-wise multiplication of this two input vectors before the reduction sum on the resulting new vector.
In the code examples of the cuda cub, the dimension of input vectors is equal to the blocknumber*threadnumber. what if we have a very large vector.