I have a list of lists, containing data.frames, from which I want to select only a few rows. I can achieve it in a for-loop, where I create a sequence based on the amount of rows and select only row indices according to that sequence.
But if I have deeper nested lists it doesn't work anymore. I am also sure, that there is a better way of doing that without a loop.
What would be an efficient and generic approach to sample from nested lists, that vary in their dimensions and contain data.frames or matrices?
## Dummy Data
n1=100;n2=300;n3=100
crdOrig <- list(
list(data.frame(x = runif(n1,10,20), y = runif(n1,40,60))),
list(data.frame(x = runif(n2,10,20), y = runif(n2,40,60))),
list(data.frame(x = runif(n3,10,20), y = runif(n3,40,60)))
)
## Code to opimize
FiltRef <- list()
filterBy = 10
for (r in 1:length(crdOrig)) {
tmp <- do.call(rbind, crdOrig[[r]])
filterInd <- seq(1,nrow(tmp), by = filterBy)
FiltRef[[r]] <- tmp[filterInd,]
}
crdResult <- do.call(rbind, FiltRef)
# Plotting
crdOrigPl <- do.call(rbind, unlist(crdOrig, recursive = F))
plot(crdOrigPl[,1], crdOrigPl[,2], col="red", pch=20)
points(crdResult[,1], crdResult[,2], col="green", pch=20)
The code above works also if a list contains several data.frames (data below).
## Dummy Data (Multiple DF)
crdOrig <- list(
list(data.frame(x = runif(n1,10,20), y = runif(n1,40,60)),
data.frame(x = runif(n1,10,20), y = runif(n1,40,60))),
list(data.frame(x = runif(n2,10,20), y = runif(n2,40,60))),
list(data.frame(x = runif(n3,10,20), y = runif(n3,40,60)))
)
But if a list contains multiple lists, it throws an error trying to bind the result (FiltRef
) together.
The result can be a data.frame with 2 columns (x,y) - like crdResult
or a one dimensional list like FiltRef
(from the first example)
## Dummy Data (Multiple Lists)
crdOrig <- list(
list(list(data.frame(x = runif(n1,10,20), y = runif(n1,40,60))),
list(data.frame(x = runif(n1,10,20), y = runif(n1,40,60)))),
list(data.frame(x = runif(n2,10,20), y = runif(n2,40,60))),
list(data.frame(x = runif(n3,10,20), y = runif(n3,40,60)))
)
+1 and Thank you all for your brilliant answers! They all work and there is a lot to learn from each one of them. I will give this one to @Gwang-Jin Kim as his solution is the most flexible and extensive, although they all deserve to be checked!