This is the code I have and it works for single images:
Loading images and apply the encoding
from face_recognition.face_recognition_cli import image_files_in_folder
Image1 = face_recognition.load_image_file("Folder/Image1.jpg")
Image_encoding1 = face_recognition.face_encodings(Image1)
Image2 = face_recognition.load_image_file("Folder/Image2.jpg")
Image_encoding2 = face_recognition.face_encodings(Image2)
Face encodings are stored in the first array, after column_stack we have to resize
Encodings_For_File = np.column_stack(([Image_encoding1[0]],
[Image_encoding2[0]]))
Encodings_For_File.resize((2, 128))
Convert array to pandas dataframe and write to csv
Encodings_For_File_Panda = pd.DataFrame(Encodings_For_File)
Encodings_For_File_Panda.to_csv("Celebrity_Face_Encoding.csv")
How do I loop over the images in 'Folder' and extract the encoding into a csv file? I have to do this with many images and cannot do it manually. I tried several approaches, but none a working for me. Cv2 can be used instead of load_image_file?