So for this internship I am doing, I need to use the integral of (x^(9/2))/((1-x)^2) as part of an equation I am graphing. However, the variable that I am graphing along the x axis appears in both limits of integration. Since I am a complete and total novice at python, my code is atrocious, but I ended up copy+pasting the indefinite integral twice, plugging in the limits of integration, and subtracting. How can I make the code better?
import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate
x = np.arange(0,2.5,0.00001)
zs = 8
zr = 6
rbub = 5
sig = 2.5
XHI = 0.5
sigma = 10**-sig
L = 10**-3
zb = zs - (((1 + zs)/8)**(3/2)) * (0.0275) * (rbub/10)
a = (1+zr)/((1+zs)*(x+1))
b = (1+zb)/((1+zs)*(x+1))
def f(x):
ans = 0.000140092
ans = ans * ((1+zs)**(3/2))
ans = ans * ((x+1)**(3/2))
ans = ans * XHI
return ans * ((9/2)*(np.log(1-np.sqrt(b)) - np.log(np.sqrt(b)+1)) + (1/35 * (1/(b-1)) * (10*(b**(9/2)) + 18*(b**(7/2)) + 42*(b**(5/2)) + 210*(b**(3/2)) - 315*(b**(1/2))) - ((9/2)*(np.log(1-np.sqrt(a)) - np.log(np.sqrt(a)+1)) + (1/35 * (1/(a-1)) * (10*(a**(9/2)) + 18*(a**(7/2)) + 42*(a**(5/2)) + 210*(a**(3/2)) - 315*(a**(1/2)))))))