Specific
IMO, in this specific example, I think it is important to notice a common functionality between your loops. (Now I know that your example isn't necessarily literal here, but just bear with me for a sec) as each loop iterates N
times, you can restructure your code like the following:
Example
int max_iterations = N * N * N;
for (int i = 0; i < max_iterations; i++)
{
/* do stuff, like the following for example */
*(some_ptr + i) = 0; // as opposed to *(some_3D_ptr + i*X + j*Y + Z) = 0;
// some_arr[i] = 0; // as oppose to some_3D_arr[i][j][k] = 0;
}
Now, it is important to remember that all loops, while for or otherwise, are really just syntatic sugar for the if-goto paradigm. I agree with the others that you ought to have a function return the result, however I wanted to show an example like the above in which that may not be the case. Granted, I'd flag the above in a code review but if you replaced the above with a goto I'd consider that a step in the wrong direction. (NOTE -- Make sure that you can reliably fit it into your desired datatype)
General
Now, as a general answer, the exit conditions for your loop may not be the same everytime (like the post in question). As a general rule, pull as many unneeded operations out of your loops (multiplications, etc.) as far out as you can as, while compilers are getting smarter everyday, there is no replacement for writing efficient and readable code.
Example
/* matrix_length: int of m*n (row-major order) */
int num_squared = num * num;
for (int i = 0; i < matrix_length; i++)
{
some_matrix[i] *= num_squared; // some_matrix is a pointer to an array of ints of size matrix_length
}
rather than writing *= num * num
, we no longer have to rely on the compiler to optimize this out for us (though any good compiler should). So any doubly or triply nested loops which perform the above functionality would also benefit not only your code, but IMO writing clean and efficient code on your part. In the first example, we could have instead had *(some_3D_ptr + i*X + j*Y + Z) = 0;
! Do we trust the compiler to optimize out i*X
and j*Y
, so that they aren't computed every iteration?
bool check_threshold(int *some_matrix, int max_value)
{
for (int i = 0; i < rows; i++)
{
int i_row = i*cols; // no longer computed inside j loop unnecessarily.
for (int j = 0; j < cols; j++)
{
if (some_matrix[i_row + j] > max_value) return true;
}
}
return false;
}
Yuck! Why aren't we using classes provided by the STL or a library like Boost? (we must be doing some low level/high performant code here). I couldn't even write a 3D version, due to the complexity. Even though we have hand optimized something, it may even be better to use #pragma unroll or similar preprocessor hints if your compiler allows.
Conclusion
Generally, the higher the abstraction level you can use, the better, however if say aliasing a 1-Dimensional row-major order matrix of integers to a 2-Dimensional array makes your code-flow harder to understand/extend, is it worth it? Likewise, that also may be an indicator to make something into its own function. I hope that, given these examples, you can see that different paradigms are called for in different places, and its your job as the programmer to figure that out. Don't go crazy with the above, but make sure you know what they mean, how to use them, and when they are called for, and most importantly, make sure the other people using your codebase know what they are as well and have no qualms about it. Good luck!