Let us have the following table in SQL Server 2016
-- generating 1M test table with four attributes
WITH x AS
(
SELECT n FROM (VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9)) v(n)
), t1 AS
(
SELECT ones.n + 10 * tens.n + 100 * hundreds.n + 1000 * thousands.n + 10000 * tenthousands.n + 100000 * hundredthousands.n as id
FROM x ones, x tens, x hundreds, x thousands, x tenthousands, x hundredthousands
)
SELECT id,
id % 50 predicate_col,
row_number() over (partition by id % 50 order by id) join_col,
LEFT('Value ' + CAST(CHECKSUM(NEWID()) AS VARCHAR) + ' ' + REPLICATE('*', 1000), 1000) as padding
INTO TestTable
FROM t1
GO
-- setting the `id` as a primary key (therefore, creating a clustered index)
ALTER TABLE TestTable ALTER COLUMN id int not null
GO
ALTER TABLE TestTable ADD CONSTRAINT pk_TestTable_id PRIMARY KEY (id)
-- creating a non-clustered index
CREATE NONCLUSTERED INDEX ix_TestTable_predicate_col_join_col
ON TestTable (predicate_col, join_col)
GO
Ok, and now when I run the following queries having just slightly different predicates (b.predicate_col <= 0 vs. b.predicate_col = 0) I got completely different plans.
-- Q1
select b.id, b.predicate_col, b.join_col, b.padding
from TestTable b
join TestTable a on b.join_col = a.id
where a.predicate_col = 1 and b.predicate_col <= 0
option (maxdop 1)
-- Q2
select b.id, b.predicate_col, b.join_col, b.padding
from TestTable b
join TestTable a on b.join_col = a.id
where a.predicate_col = 1 and b.predicate_col = 0
option (maxdop 1)
If I look on query plans, then it is clear that he chooses to join the key lookup together with non-clustered index seek first and then he does the final join with non-clustered index in the case of Q1 (which is bad). A much better solution is in the case of Q2: he joins the non-clustered indexes first and then he does the final key lookup.
The question is: why is that and can I improve it somehow?
In my intuitive understanding of histograms, it should be easy to estimate the correct result for both variants of predicates (b.predicate_col <= 0 vs. b.predicate_col = 0
), therefore, why different query plans?
EDIT:
Actually, I do not want to change the indexes or physical structure of the table. I would like to understand why he picks up such a bad query plan in the case of Q1. Therefore, my question is precisely like this: Why he picks such a bad query plan in the case of Q1 and can I improve without altering the physical design?
I have checked the result estimations in the query plan and both query plans have exact row number estimations of every operator! I have checked the result memo structure (OPTION (QUERYTRACEON 3604, QUERYTRACEON 8615, QUERYTRACEON 8620)
) and rules applied during the compilation (OPTION (QUERYTRACEON 3604, QUERYTRACEON 8619, QUERYTRACEON 8620)
) and it seems that he finish the query plan search once he hit the first plan. Is this the reason for such behaviour?