I'm trying to introduce LightGBM for text multiclassification. 2 columns in pandas dataframe, where 'category' and 'contents' are set as follows.
Dataframe:
contents category
1 this is example1... A
2 this is example2... B
3 this is example3... C
*Actual data frame consists of approx 600 rows and 2 columns.
Hereby I'm trying to classify text into 3 categories as follows.
Codes:
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
stopwords1 = set(stopwords.words('english'))
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer, TfidfVectorizer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
import lightgbm as lgbm
from lightgbm import LGBMClassifier, LGBMRegressor
#--main code--#
X_train, X_test, Y_train, Y_test = train_test_split(df['contents'], df['category'], random_state = 0, test_size=0.3, shuffle=True)
count_vect = CountVectorizer(ngram_range=(1,2), stop_words=stopwords1)
X_train_counts = count_vect.fit_transform(X_train)
tfidf_transformer = TfidfTransformer(use_idf=True, smooth_idf=True, norm='l2', sublinear_tf=True)
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
lgbm_train = lgbm.Dataset(X_train_tfidf, Y_train)
lgbm_eval = lgbm.Dataset(count_vect.transform(X_test), Y_test, reference=lgbm_train)
params = {
'boosting_type':'gbdt',
'objective':'multiclass',
'learning_rate': 0.02,
'num_class': 3,
'early_stopping': 100,
'num_iteration': 2000,
'num_leaves': 31,
'is_enable_sparse': 'true',
'tree_learner': 'data',
'max_depth': 4,
'n_estimators': 50
}
clf_gbm = lgbm.train(params, valid_sets=lgbm_eval)
predicted_LGBM = clf_gbm.predict(count_vect.transform(X_test))
print(accuracy_score(Y_test, predicted_LGBM))
Then I got an error as:
ValueError: could not convert string to float: 'b'
I also convert 'category' column ['a', 'b', 'c'] to int as [0, 1, 2] but got an error as
TypeError: Expected np.float32 or np.float64, met type(int64).
What's wrong with my code?
Any advice / suggestions will be greatly appreciated.
Thanks in advance.