I have dataframes I want to horizontally concatenate while ignoring the index.
I know that for arithmetic operations, ignoring the index can lead to a substantial speedup if you use the numpy array .values
instead of the pandas Series. Is it possible to horizontally concatenate or merge pandas dataframes whilst ignoring the index? (To my dismay, ignore_index=True does something else.) And if so, does it give a speed gain?
import pandas as pd
df1 = pd.Series(range(10)).to_frame()
df2 = pd.Series(range(10), index=range(10, 20)).to_frame()
pd.concat([df1, df2], axis=1)
# 0 0
# 0 0.0 NaN
# 1 1.0 NaN
# 2 2.0 NaN
# 3 3.0 NaN
# 4 4.0 NaN
# 5 5.0 NaN
# 6 6.0 NaN
# 7 7.0 NaN
# 8 8.0 NaN
# 9 9.0 NaN
# 10 NaN 0.0
# 11 NaN 1.0
# 12 NaN 2.0
# 13 NaN 3.0
# 14 NaN 4.0
# 15 NaN 5.0
# 16 NaN 6.0
# 17 NaN 7.0
# 18 NaN 8.0
# 19 NaN 9.0
I know I can get the result I want by resetting the index of df2, but I wonder whether there is a faster (perhaps numpy method) to do this?