I was trying to find the best features that dominate for the output of my regression model, Following is my code.
seed = 7
np.random.seed(seed)
estimators = []
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=3,
batch_size=20)))
pipeline = Pipeline(estimators)
rfe = RFE(estimator= pipeline, n_features_to_select=5)
fit = rfe.fit(X_set, Y_set)
But I get the following runtime error when running.
RuntimeError: The classifier does not expose "coef_" or "feature_importances_" attributes
How to overcome this issue and select best features for my model? If not, Can I use algorithms like LogisticRegression() provided and supported by RFE in Scikit to achieve the task of finding best features for my dataset?