4

I'm scraping review from moocs likes this one

From there I'm getting all the course details, 5 items and another 6 items from each review itself.

This is the code I have for the course details:

def parse_reviews(self, response):
    l = ItemLoader(item=MoocsItem(), response=response)
    l.add_xpath('course_title', '//*[@class="course-header-ng__main-info__name__title"]//text()')
    l.add_xpath('course_description', '//*[@class="course-info__description"]//p/text()')
    l.add_xpath('course_instructors', '//*[@class="course-info__instructors__names"]//text()')
    l.add_xpath('course_key_concepts', '//*[@class="key-concepts__labels"]//text()')
    l.add_value('course_link', response.url)
    return l.load_item()

Now I want to include the review details, another 5 items for each review. Since the course data is common for all the reviews I want to store it in a different file and use course name/id to relate the data afterward.

This is the code I have for the review's items:

for review in response.xpath('//*[@class="review-body"]'):
    review_body = review.xpath('.//div[@class="review-body__content"]//text()').extract()
    course_stage =  review.xpath('.//*[@class="review-body-info__course-stage--completed"]//text()').extract()
    user_name =  review.xpath('.//*[@class="review-body__username"]//text()').extract()
    review_date =  review.xpath('.//*[@itemprop="datePublished"]/@datetime').extract()
    score =  review.xpath('.//*[@class="sr-only"]//text()').extract()

I tried to work with a temporary solution, returning all the items for each case but is not working either:

def parse_reviews(self, response):
    #print response.body
    l = ItemLoader(item=MoocsItem(), response=response)
    #l = MyItemLoader(selector=response)
    l.add_xpath('course_title', '//*[@class="course-header-ng__main-info__name__title"]//text()')
    l.add_xpath('course_description', '//*[@class="course-info__description"]//p/text()')
    l.add_xpath('course_instructors', '//*[@class="course-info__instructors__names"]//text()')
    l.add_xpath('course_key_concepts', '//*[@class="key-concepts__labels"]//text()')
    l.add_value('course_link', response.url)

    for review in response.xpath('//*[@class="review-body"]'):
        l.add_xpath('review_body', './/div[@class="review-body__content"]//text()')
        l.add_xpath('course_stage', './/*[@class="review-body-info__course-stage--completed"]//text()')
        l.add_xpath('user_name', './/*[@class="review-body__username"]//text()')
        l.add_xpath('review_date', './/*[@itemprop="datePublished"]/@datetime')
        l.add_xpath('score', './/*[@class="sr-only"]//text()')

        yield l.load_item()

The output file for that script is corrupted, cells are displaced and the size of the fields is not correct.

EDIT: I want to have two files at the output:

The first one containing:

course_title,course_description,course_instructors,course_key_concepts,course_link

And the second one with:

course_title,review_body,course_stage,user_name,review_date,score
Vadim Kotov
  • 8,084
  • 8
  • 48
  • 62
Luis Ramon Ramirez Rodriguez
  • 9,591
  • 27
  • 102
  • 181

1 Answers1

7

The issue is you are mixing everything up into a single item, which is not the right way to do it. You should create two items: MoocsItem and MoocsReviewItem.

And then update the code like below

def parse_reviews(self, response):
    #print response.body
    l = ItemLoader(item=MoocsItem(), response=response)
    l.add_xpath('course_title', '//*[@class="course-header-ng__main-info__name__title"]//text()')
    l.add_xpath('course_description', '//*[@class="course-info__description"]//p/text()')
    l.add_xpath('course_instructors', '//*[@class="course-info__instructors__names"]//text()')
    l.add_xpath('course_key_concepts', '//*[@class="key-concepts__labels"]//text()')
    l.add_value('course_link', response.url)

    item = l.load_item()

    for review in response.xpath('//*[@class="review-body"]'):
        r = ItemLoader(item=MoocsReviewItem(), response=response, selector=review)
        r.add_value('course_title', item['course_title'])
        r.add_xpath('review_body', './/div[@class="review-body__content"]//text()')
        r.add_xpath('course_stage', './/*[@class="review-body-info__course-stage--completed"]//text()')
        r.add_xpath('user_name', './/*[@class="review-body__username"]//text()')
        r.add_xpath('review_date', './/*[@itemprop="datePublished"]/@datetime')
        r.add_xpath('score', './/*[@class="sr-only"]//text()')

        yield r.load_item()

    yield item

Now what you want is that different item type goes in different csv files, which is what the below SO thread answers:

How can scrapy export items to separate csv files per item

I have not tested the below, but the code will look something like this:

from scrapy.exporters import CsvItemExporter
from scrapy import signals
from scrapy.xlib.pydispatch import dispatcher


def item_type(item):
    return type(item).__name__.replace('Item','').lower()  # TeamItem => team

class MultiCSVItemPipeline(object):
    SaveTypes = ['moocs','moocsreview']
    
    def __init__(self):
        dispatcher.connect(self.spider_opened, signal=signals.spider_opened)
        dispatcher.connect(self.spider_closed, signal=signals.spider_closed)

    def spider_opened(self, spider):
        self.files = dict([ (name, open(CSVDir+name+'.csv','w+b')) for name in self.SaveTypes ])
        self.exporters = dict([ (name,CsvItemExporter(self.files[name])) for name in self.SaveTypes])
        [e.start_exporting() for e in self.exporters.values()]

    def spider_closed(self, spider):
        [e.finish_exporting() for e in self.exporters.values()]
        [f.close() for f in self.files.values()]

    def process_item(self, item, spider):
        what = item_type(item)
        if what in set(self.SaveTypes):
            self.exporters[what].export_item(item)
        return item

You need to make sure the ITEM_PIPELINES is updated to use this MultiCSVItemPipeline class

ITEM_PIPELINES = {
    'mybot.pipelines.MultiCSVItemPipeline': 300,
}
Alex Waygood
  • 6,304
  • 3
  • 24
  • 46
Tarun Lalwani
  • 142,312
  • 9
  • 204
  • 265