I want to use bnlearn
for a classification task with Naive Bayes algorithm.
I use this data set for my tests. Where 3 variables are continuous ()V2, V4, V10) and others are discrete. As far as I know bnlearn
cannot work with continuous variables, so there is a need to convert them to factors or discretize. For now I want to convert all the features into factors. However, I came across to some problems. Here is a sample code
dataSet <- read.csv("creditcard_german.csv", header=FALSE)
# ... split into trainSet and testSet ...
trainSet[] <- lapply(trainSet, as.factor)
testSet[] <- lapply(testSet, as.factor)
# V25 is the class variable
bn = naive.bayes(trainSet, training = "V25")
fitted = bn.fit(bn, trainSet, method = "bayes")
pred = predict(fitted , testSet)
...
For this code I get an error message while calling predict()
'V1' has different number of levels in the node and in the data.
And when I remove that V1 from the training set, I get the same error for the V2 variable. However, error disappears when I do factorization dataSet [] <- lapply(dataSet, as.factor)
and only than split it into training and test sets.
So which is the elegant solution for this? Because in real world applications test and train sets can be from different sources. Any ideas?