I have been trying to fix this problem for several days, with no luck. I have been implementing a simple neural net with a single hidden layer from scratch, just for my own understanding. I have successfully implemented it with sigmoid, tanh and relu activations for binary classifications, and am now attempting to use softmax at the output for multi-class classifications.
In every tutorial I have come across for a softmax implementation, including my lecturer's notes, the derivative of the softmax cross entropy error at the output layer is simplified down to just predictions - labels
, thus essentially subtracting 1 from the predicted value at the position of the true label.
However, I found that if this was used, then the error of my network would continuosuly increase until it converged to always predicting one random class with 100%, and the other with 0%. Interestingly, if I change this to labels - predictions
, it works perfectly on my simple test of learning the binary XOR function below. Unfortunately, if I then attempt to the apply the same network to a more complex problem (hand-written letters - 26 classes), it again converges to outputting one class with 100% probability very quickly when either labels - predictions
or predictions - labels
is used.
I have no idea why this incorrect line of code works for the simple binary classification, but not for a classification with many classes. I assume that I have something else backwards in my code, and this incorrect change is essentially reversing this other error, but I cannot find where this may be.
import numpy as np
class MLP:
def __init__(self, numInputs, numHidden, numOutputs):
# MLP architecture sizes
self.numInputs = numInputs
self.numHidden = numHidden
self.numOutputs = numOutputs
# MLP weights
self.IH_weights = np.random.rand(numInputs, numHidden) # Input -> Hidden
self.HO_weights = np.random.rand(numHidden, numOutputs) # Hidden -> Output
# Gradients corresponding to weight matrices computed during backprop
self.IH_w_gradients = np.zeros_like(self.IH_weights)
self.HO_w_gradients = np.zeros_like(self.HO_weights)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoidDerivative(self, x):
return x * (1 - x)
def softmax(self, x):
# exps = np.exp(x)
exps = np.exp(x - np.max(x)) # Allows for large values
return exps / np.sum(exps)
def forward(self, input):
self.I = np.array(input).reshape(1, self.numInputs) # (numInputs, ) -> (1, numInputs)
self.H = self.I.dot(self.IH_weights)
self.H = self.sigmoid(self.H)
self.O = self.H.dot(self.HO_weights)
self.O = self.softmax(self.O)
self.O += 1e-10 # Allows for log(0)
return self.O
def backwards(self, label):
self.L = np.array(label).reshape(1, self.numOutputs) # (numOutputs, ) -> (1, numOutputs)
self.O_error = - np.sum([t * np.log(y) for y, t in zip(self.O, self.L)])
# self.O_delta = self.O - self.L # CORRECT (not working)
self.O_delta = self.L - self.O # INCORRECT (working)
self.H_error = self.O_delta.dot(self.HO_weights.T)
self.H_delta = self.H_error * self.sigmoidDerivative(self.H)
self.IH_w_gradients += self.I.T.dot(self.H_delta)
self.HO_w_gradients += self.H.T.dot(self.O_delta)
return self.O_error
def updateWeights(self, learningRate):
self.IH_weights += learningRate * self.IH_w_gradients
self.HO_weights += learningRate * self.HO_w_gradients
self.IH_w_gradients = np.zeros_like(self.IH_weights)
self.HO_w_gradients = np.zeros_like(self.HO_weights)
data = [
[[0, 0], [1, 0]],
[[0, 1], [0, 1]],
[[1, 0], [0, 1]],
[[1, 1], [1, 0]]
]
mlp = MLP(2, 5, 2)
numEpochs = 10000
learningRate = 0.1
for epoch in range(numEpochs):
epochLosses, epochAccuracies = [], []
for i in range(len(data)):
prediction = mlp.forward(data[i][0])
# print(prediction, "\n")
label = data[i][1]
loss = mlp.backwards(label)
epochLosses.append(loss)
epochAccuracies.append(np.argmax(prediction) == np.argmax(label))
mlp.updateWeights(learningRate)
if epoch % 1000 == 0 or epoch == numEpochs - 1:
print("EPOCH:", epoch)
print("LOSS: ", np.mean(epochLosses))
print("ACC: ", np.mean(epochAccuracies) * 100, "%\n")