Almost all objections presented from FEM / HPC practitioners above are legitimate, yet having been exposed to cases, where long-term / low-degradation heat-transfer simulations ( on a large, fine-grained time-scale ) and/or other numerical-processing related degradations, principally coming from intrinsic limits of IEEE-754 representations ( under deep re-iterations et al ) simply required a step out of the standard numerical processing,
+ I also respect the OP's need / wish to see some direction for her / his further efforts.
Doable : yet at cost ...
Used the following approach in badly-conditioned numerical analyses, where this worked as charm.
Reformulated cost-function and gradient-function were implemented in pure_DEC
-fashion, next the LSQ-minimisation solver.
The problem is not the precision per-se, but a smart problem-(re)formulation, so as to harness the advanced decimal
-class built-in operations at minimum [TIME]-domain penalty.
>>> with decimal.localcontext() as locCTX:
... for aPREC in range( 20, 31 ):
... locCTX.prec = aPREC
... ( pure_dec_LSQ_5DoF( locCTX, dec_fmin_x0_SEARCH_TRIM_TO_BE_PRECISE, decX, decY ), pure_dec_RESi( locCTX, dec_fmin_x0_SEARCH_TRIM_TO_BE_PRECISE, decX, decY ) )
...
(Decimal('0.038471115298826195147'), (Decimal('0.023589050081780503'), Decimal('-0.082605913918299990'), Decimal('0.150647690402532134'), Decimal('-0.091630826566012630')))
(Decimal('0.0384711152988261953165'), (Decimal('0.0235890500817804889'), Decimal('-0.0826059139182999933'), Decimal('0.1506476904025321349'), Decimal('-0.0916308265660126301')))
(Decimal('0.03847111529882619531420'), (Decimal('0.02358905008178048823'), Decimal('-0.08260591391829999331'), Decimal('0.15064769040253213501'), Decimal('-0.09163082656601263007')))
(Decimal('0.038471115298826195324048'), (Decimal('0.023589050081780488368'), Decimal('-0.082605913918299993309'), Decimal('0.150647690402532135021'), Decimal('-0.091630826566012630071')))
(Decimal('0.0384711152988261953231489'), (Decimal('0.0235890500817804883582'), Decimal('-0.0826059139182999933087'), Decimal('0.1506476904025321350199'), Decimal('-0.0916308265660126300707')))
(Decimal('0.03847111529882619532322276'), (Decimal('0.02358905008178048835950'), Decimal('-0.08260591391829999330863'), Decimal('0.15064769040253213501998'), Decimal('-0.09163082656601263007070')))
(Decimal('0.038471115298826195323213788'), (Decimal('0.023589050081780488359358'), Decimal('-0.082605913918299993308625'), Decimal('0.150647690402532135019974'), Decimal('-0.091630826566012630070702')))
(Decimal('0.0384711152988261953232136753'), (Decimal('0.0235890500817804883593541'), Decimal('-0.0826059139182999933086251'), Decimal('0.1506476904025321350199740'), Decimal('-0.0916308265660126300707023')))
(Decimal('0.03847111529882619532321367314'), (Decimal('0.02358905008178048835935336'), Decimal('-0.08260591391829999330862505'), Decimal('0.15064769040253213501997413'), Decimal('-0.09163082656601263007070231')))
(Decimal('0.038471115298826195323213665675'), (Decimal('0.023589050081780488359353229'), Decimal('-0.082605913918299993308625043'), Decimal('0.150647690402532135019974132'), Decimal('-0.091630826566012630070702306')))
(Decimal('0.0384711152988261953232136649869'), (Decimal('0.0235890500817804883593532187'), Decimal('-0.0826059139182999933086250437'), Decimal('0.1506476904025321350199741307'), Decimal('-0.0916308265660126300707023064')))
Technically, the precision-"expansion" goes without limits, yet, the time...:
# [PERF] @ .prec == 40 ~ 4,000 [us] ~ 4 [ms]
# @ .prec == 10000 !!! --------- ~ 991,875,234 [us] ~ 1,000 [ s]
This is the cost to pay so as to receive the expected ( principally unlimited per-se ) precision.
import decimal
import numpy as np
import zmq
try:
if isinstance( decCTX, decimal.Context ):
pass # decCTX already exists
except:
decCTX = decimal.getcontext()
decCTX.prec = 60
decX = np.asarray( ( decimal.Decimal( 3.4 ), decimal.Decimal( 3.5 ), decimal.Decimal( 3.7 ), decimal.Decimal( 4.3 ), ) )
decY = np.asarray( ( decimal.Decimal( 65 ), decimal.Decimal( 85 ), decimal.Decimal( 97 ), decimal.Decimal( 100 ), ) )
...
dec_fmin_x0_SEARCH_ADAPTIVE = np.asarray( ( decimal.Decimal( -101000000010553.05594055493064099456356276561617988943684402001075635 ),
decimal.Decimal( -8.660605201193546246 ),
decimal.Decimal( 0.00021842459768549 ),
decimal.Decimal( 99.9259163119085989057939988625810620201012857893012816197730189907743792931209843327426339987914746365315172977942868845721827684076717423116961495794648319380554868846324870276029626886129186998300662535940937605435069739237317269895772 ),
decimal.Decimal( 2.64971757369295002249999999827154484100152060917026952223212241653783649669777780217778380697777777796977777777969777777777969777777779697777777796977777805877778058777780587777777800577777780057777778005777777800577777774817774778285740 ),
)
)