1

For example, I have a dataframe like this

df = {'name':['Jennifer','Vivian','Trisha'],
     'married':[1,1,0],
     'Mon': [0, 0,1],
     'Tu':[1,0,0],
     'Wed':[0,1,0]}

enter image description here

How can I melt the dummy variables into one column like this:

enter image description here

I tried to use pd.melt() but it just stacks the several columns into one and changes the length of the column. Could someone help me with this? Thank you in advance!

2 Answers2

3

This should work:

df.replace({'married':{1:'Married', 0: 'Single'}}). \
   melt(id_vars=['married', 'name'], var_name='Workday'). \
   query('value == 1'). \
   drop('value', axis=1)

#    married      name Workday
# 2   Single    Trisha     Mon
# 3  Married  Jennifer      Tu
# 7  Married    Vivian     Wed
cmaher
  • 5,100
  • 1
  • 22
  • 34
0

This is one way.

res = pd.melt(df, id_vars=['married', 'name'], value_vars=['Mon', 'Tu', 'Wed'],
              var_name='Workday')

res = res[res['value'] == 1].reset_index(drop=True)

d = {0: 'single', 1: 'married'}
res['married'] = res['married'].map(d)

print(res)

#    married      name Workday  value
# 0   single    Trisha     Mon      1
# 1  married  Jennifer      Tu      1
# 2  married    Vivian     Wed      1
jpp
  • 159,742
  • 34
  • 281
  • 339