In keras, I want to calculate the mean of nonzero embedding output. I wonder what is the difference between mask_zero=True or False in Embedding Layer. I tried the code below :
input_data = Input(shape=(5,), dtype='int32', name='input')
embedding_layer = Embedding(1000, 24, input_length=5,mask_zero=True,name='embedding')
out = word_embedding_layer(input_data)
def antirectifier(x):
x = K.mean(x, axis=1, keepdims=True)
return x
def antirectifier_output_shape(input_shape):
shape = list(input_shape)
return tuple(shape)
out = Lambda(antirectifier, output_shape=antirectifier_output_shape,name='lambda')(out)
But it seems that the result is the mean of all the elements, how can i just calculate the mean of all nonzero inputs?