TL,DR
I get these errors when defining my input shape
ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (4000, 20, 20)
or
ValueError: Input 0 is incompatible with layer conv2d_1: expected ndim=4, found ndim=5
Long Explicit Version:
I am using different Keras NN to try classification on my own dataset.
So far I had succes with my ANN, but I am having trouble with my CNN.
DataSet
The dataset consists of matrices of specified size and filled with 0's which contain a submatrix of specified size and filled with 1's. The submatrix is optional and the goal is to train the NN to predict whether a matrix contains the submatrix or whether it doesnt. To make it more difficult to detect, I am adding various types of noise to the matrices.
Here is a picture of what an individual matrix loosk like, the black parts are 0's and the white part are 1's. There is a 1:1 correspondance between the pixels of the image and the entries in the matrix.
I save them in a text while, using numpy savetxt and loadtxt. It then looks like this:
#________________Array__Info:__(4000, 20, 20)__________
#________________Entry__Number__1________
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1
0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
#________________Entry__Number__2________
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1
0 1 0 0 0 0. . . . . . (and so on)
CNN code
Code: (imports left out)
# data
inputData = dsg.loadDataset("test_input.txt")
outputData = dsg.loadDataset("test_output.txt")
print("the size of the dataset is: ", inputData.shape, " of type: ", type(inputData))
# parameters
# CNN
cnn = Sequential()
cnn.add(Conv2D(32, (3, 3), input_shape = inputData.shape, activation = 'relu'))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Flatten())
cnn.add(Dense(units=64, activation='relu'))
cnn.add(Dense(units=1, activation='sigmoid'))
cnn.compile(optimizer = "adam", loss = 'binary_crossentropy', metrics = ['accuracy'])
cnn.summary()
cnn.fit(inputData,
outputData,
epochs=100,
validation_split=0.2)
Problem:
I get this output error message
Using TensorFlow backend.
the size of the dataset is: (4000, 20, 20) of type: <class 'numpy.ndarray'>
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 3998, 18, 32) 5792
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 1999, 9, 32) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 575712) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 36845632
_________________________________________________________________
dense_2 (Dense) (None, 1) 65
=================================================================
Total params: 36,851,489
Trainable params: 36,851,489
Non-trainable params: 0
_________________________________________________________________
Traceback (most recent call last):
File "D:\GOOGLE DRIVE\School\sem-2-2018\BSP2\BiCS-BSP-2\CNN\matrixCNN.py", line 47, in <module>
validation_split=0.2)
File "C:\Code\Python\lib\site-packages\keras\models.py", line 963, in fit
validation_steps=validation_steps)
File "C:\Code\Python\lib\site-packages\keras\engine\training.py", line 1637, in fit
batch_size=batch_size)
File "C:\Code\Python\lib\site-packages\keras\engine\training.py", line 1483, in _standardize_user_data
exception_prefix='input')
File "C:\Code\Python\lib\site-packages\keras\engine\training.py", line 113, in _standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (4000, 20, 20)
I really do not know how I can solve this. I looked into the documentation of Conv2D which says to to put it in such a form: (batch, height, width, channels). In my case that is ( i think):
input_shape=(4000, 20, 20, 1)
,as I have4000 20*20 matrices with only 1's and 0's
But then I get this error message:
Using TensorFlow backend.
the size of the dataset is: (4000, 20, 20) of type: <class 'numpy.ndarray'>
Traceback (most recent call last):
File "D:\GOOGLE DRIVE\School\sem-2-2018\BSP2\BiCS-BSP-2\CNN\matrixCNN.py", line 30, in <module>
cnn.add(Conv2D(32, (3, 3), input_shape = (4000, 12, 12, 1), activation = 'relu'))
File "C:\Code\Python\lib\site-packages\keras\models.py", line 467, in add
layer(x)
File "C:\Code\Python\lib\site-packages\keras\engine\topology.py", line 573, in __call__
self.assert_input_compatibility(inputs)
File "C:\Code\Python\lib\site-packages\keras\engine\topology.py", line 472, in assert_input_compatibility
str(K.ndim(x)))
ValueError: Input 0 is incompatible with layer conv2d_1: expected ndim=4, found ndim=5
In which exact shape should I pass the data into the CNN?
All the files are available here Thank you for your time.