I'm currently learning about concurrency at my University. In this context I have to implement the reader/writer problem in C, and I think I'm on the right track.
My thought on the problem is, that we need two locks rd_lock
and wr_lock
. When a writer thread wants to change our global variable, it tries to grab both locks, writes to the global and unlocks. When a reader wants to read the global, it checks if wr_lock
is currently locked, and then reads the value, however one of the reader threads should grab the rd_lock
, but the other readers should not care if rd_lock
is locked.
I am not allowed to use the implementation already in the pthread library.
typedef struct counter_st {
int value;
} counter_t;
counter_t * counter;
pthread_t * threads;
int readers_tnum;
int writers_tnum;
pthread_mutex_t rd_lock;
pthread_mutex_t wr_lock;
void * reader_thread() {
while(true) {
pthread_mutex_lock(&rd_lock);
pthread_mutex_trylock(&wr_lock);
int value = counter->value;
printf("%d\n", value);
pthread_mutex_unlock(&rd_lock);
}
}
void * writer_thread() {
while(true) {
pthread_mutex_lock(&wr_lock);
pthread_mutex_lock(&rd_lock);
// TODO: increment value of counter->value here.
counter->value += 1;
pthread_mutex_unlock(&rd_lock);
pthread_mutex_unlock(&wr_lock);
}
}
int main(int argc, char **args) {
readers_tnum = atoi(args[1]);
writers_tnum = atoi(args[2]);
pthread_mutex_init(&rd_lock, 0);
pthread_mutex_init(&wr_lock, 0);
// Initialize our global variable
counter = malloc(sizeof(counter_t));
counter->value = 0;
pthread_t * threads = malloc((readers_tnum + writers_tnum) * sizeof(pthread_t));
int started_threads = 0;
// Spawn reader threads
for(int i = 0; i < readers_tnum; i++) {
int code = pthread_create(&threads[started_threads], NULL, reader_thread, NULL);
if (code != 0) {
printf("Could not spawn a thread.");
exit(-1);
} else {
started_threads++;
}
}
// Spawn writer threads
for(int i = 0; i < writers_tnum; i++) {
int code = pthread_create(&threads[started_threads], NULL, writer_thread, NULL);
if (code != 0) {
printf("Could not spawn a thread.");
exit(-1);
} else {
started_threads++;
}
}
}
Currently it just prints a lot of zeroes, when run with 1 reader and 1 writer, which means, that it never actually executes the code in the writer thread. I know that this is not going to work as intended with multiple readers, however I don't understand what is wrong, when running it with one of each.