Lets solve this problem with a database driven approach, and Spring AOP.
You have several hundred rules, and do not wish to pollute the current code with boilerplate code like void method1() { if (!rule1) return; .. do method }
or have to create additional interfaces which all rule based methods must implement.
Spring AOP provides a means to leave the current base in tact, and instead have methods intercepted (via a proxy) to determine if the method should run or not. You write the proxy code once, and the only ongoing requirement is to keep the database up to date with new rules.
Step 1: Build a database schema which maps method names to boolean values
method_name VARCHAR(100), is_rule_active tinyint(1);
There will be one row for each rule. The row will contain the method name (as it appears in the java code) and a boolean true=active, false=not active.
Step 2: Build an interface to the database (DAO)
You need a simple abstraction to the database. Something like:
public interface RuleSelectionInterface {
boolean isRuleActive(String methodName);
}
The implementation will be basic DAO code, which will query for the row with method_name
equal to methodName
. For simplicity, and to demonstrate, I used a Map instead:
@Repository
public class RuleSelectionImpl implements RuleSelectionInterface {
Map<String, Boolean> rules;
public RuleSelectionImpl() {
rules = new HashMap<>();
rules.put("rule1Method", true);
rules.put("rule2Method", false);
}
@Override
public boolean isRuleActive(String methodName) {
if (!rules.containsKey(methodName))
return false;
return rules.get(methodName);
}
}
Step 3: Create a Spring AOP aspect
An aspect is created to intercept method calls, and determine when the call should be executed.
To allow execution to be continued, or aborted, you use an @Around
advice, which will be passed the execution point (by means of a ProceedingJoinPoint
) from which you can either abort (the proxy method simply returns) or run the code by using the proceed
method.
There is some choice here on which methods should be intercepted (this is done by defining pointcuts). This example will intercept methods with names starting with rule
:
@Around("execution(* rule*(..))")
You could intercept all methods, or methods based on naming patterns, etc. For a detailed understanding of how to create pointcuts to intercept methods refer to Spring AOP
Here is the AOP code, which is called upon method interception, and which uses your database rule interface to look up if the rule is active for this method name:
@Aspect
@Component
public class RuleAspects {
@Autowired
private RuleSelectionInterface rulesSelectionService;
@Around("execution(* rule*(..))")
public void ruleChooser(ProceedingJoinPoint jp) throws Throwable
{
Signature sig = jp.getSignature();
System.out.println("Join point signature = "+sig);
String methodName = sig.getName();
if (rulesSelectionService.isRuleActive(methodName))
jp.proceed();
else
System.out.println("Method was aborted (rule is false)");
}
}
Sample usage:
I created a simple class with two methods (however this approach works regardless of how many classes/methods you have rule based methods for).
@Component
public class MethodsForRules {
public void rule1Method() {
System.out.println("Rule 1 method");
}
public void rule2Method() {
System.out.println("Rule 2 method");
}
}
You will have noticed in the Map that rule1Method is set to true, and rule2Method is set to false.
When the code tries to run rule1Method and rule2Method:
MethodsForRules r; // Is a Spring managed bean.
r.rule1Method();
r.rule2Method();
Produces the following output:
Join point signature = void com.stackoverflow.aoparound.demo.MethodsForRules.rule1Method()
Rule 1 method <- Here is the method running
Join point signature = void
com.stackoverflow.aoparound.demo.MethodsForRules.rule2Method()
Method was aborted (rule is false) <- Here the method is aborted
Summary:
This demonstration has shown how Spring AOP can be used, in combination with a rules based interface, to intercept methods (by using a proxy), examine the method name which was intercepted, lookup the active status for this method, and either run the method, or abort it.