0

I followed these two posts to understand about restoring a saved model and then extracting variables from it:

But now I am unable to understand as to what do those variables mean exactly and how to understand the relative importance given by the model to the features in the learning process? Below is the output of tf.train.list_variables and tf.train.load_variables (respectively) from my code:

>> tf.train.list_variables('./dnn_fe_trial1/model.ckpt-1')

            [('dnn/hiddenlayer_0/biases', [50]),
            ('dnn/hiddenlayer_0/biases/enlayer_0/biases/part_0/Adam', [50]),
            ('dnn/hiddenlayer_0/biases/enlayer_0/biases/part_0/Adam_1', [50]),
            ('dnn/hiddenlayer_0/weights', [61, 50]),
            ('dnn/hiddenlayer_0/weights/nlayer_0/weights/part_0/Adam', [61, 50]),
            ('dnn/hiddenlayer_0/weights/nlayer_0/weights/part_0/Adam_1', [61, 50]),
            ('dnn/input_from_feature_columns/brand_embedding/weights', [10000, 16]),
            ('dnn/input_from_feature_columns/brand_embedding/weights/mbedding/weights/part_0/Adam', [10000, 16]),
            ('dnn/input_from_feature_columns/brand_embedding/weights/mbedding/weights/part_0/Adam_1', [10000, 16]),
            ('dnn/input_from_feature_columns/city_embedding/weights', [12, 3]),
            ('dnn/input_from_feature_columns/city_embedding/weights/mbedding/weights/part_0/Adam', [12, 3]),
            ('dnn/input_from_feature_columns/city_embedding/weights/mbedding/weights/part_0/Adam_1', [12, 3]),
            ('dnn/input_from_feature_columns/dow_embedding/weights', [7, 3]),
            ('dnn/input_from_feature_columns/dow_embedding/weights/mbedding/weights/part_0/Adam', [7, 3]),
            ('dnn/input_from_feature_columns/dow_embedding/weights/mbedding/weights/part_0/Adam_1', [7, 3]),
            ('dnn/input_from_feature_columns/l_cat_embedding/weights', [11, 3]),
            ('dnn/input_from_feature_columns/l_cat_embedding/weights/mbedding/weights/part_0/Adam', [11, 3]),
            ('dnn/input_from_feature_columns/l_cat_embedding/weights/mbedding/weights/part_0/Adam_1', [11, 3]),
            ('dnn/input_from_feature_columns/product_id_embedding/weights', [10000, 16]),
            ('dnn/input_from_feature_columns/product_id_embedding/weights/mbedding/weights/part_0/Adam', [10000, 16]),
            ('dnn/input_from_feature_columns/product_id_embedding/weights/mbedding/weights/part_0/Adam_1', [10000, 16]),
            ('dnn/input_from_feature_columns/type_id_embedding/weights', [10000, 16]),
            ('dnn/input_from_feature_columns/type_id_embedding/weights/mbedding/weights/part_0/Adam', [10000, 16]),
            ('dnn/input_from_feature_columns/type_id_embedding/weights/mbedding/weights/part_0/Adam_1', [10000, 16]),
            ('dnn/logits/biases', [1]),
            ('dnn/logits/biases/nn/logits/biases/part_0/Adam', [1]),
            ('dnn/logits/biases/nn/logits/biases/part_0/Adam_1', [1]),
            ('dnn/logits/weights', [50, 1]),
            ('dnn/logits/weights/n/logits/weights/part_0/Adam', [50, 1]),
            ('dnn/logits/weights/n/logits/weights/part_0/Adam_1', [50, 1]),
            ('dnn/regression_head/dnn/learning_rate', []),
            ('dnn/regression_head/train_op/dnn/beta1_power', []),
            ('dnn/regression_head/train_op/dnn/beta2_power', []),
            ('global_step', [])]

>> tf.train.load_variable('./dnn_fe_trial1/model.ckpt-1','dnn/hiddenlayer_0/weights')

            array([[ 0.14350541,  0.18532775, -0.03176343, ..., -0.07279533,
            -0.08580479, -0.07619692],
            [ 0.16894072, -0.10593006,  0.06088932, ..., -0.01411209,
            -0.26995516,  0.15667924],
            [-0.10020741, -0.03164399, -0.14427225, ..., -0.02787848,
            -0.15646952, -0.1361219 ],
            ...,
            [ 0.15014522,  0.15378515, -0.05414914, ..., -0.16788298,
            -0.14711154, -0.226382  ],
            [-0.16823539,  0.2009476 , -0.271177  , ..., -0.10694946,
            -0.22870012, -0.13458726],
            [-0.13175508,  0.15535942, -0.18468232, ..., -0.1362714 ,
            -0.27476427, -0.21606216]], dtype=float32)
  • Can you revise this question and bring it here [crossValidated](https://stats.stackexchange.com/) – quintumnia Apr 13 '18 at 12:32
  • Does this work- [How to extract relative importance of features from a tensorflow DNNRegressor model?- crossValidated](https://stats.stackexchange.com/questions/340355/how-to-extract-relative-importance-of-features-from-a-tensorflow-dnnregressor-mo) ? – chetna bansal Apr 13 '18 at 13:20

0 Answers0