for(i=0;i<N-2;i++)
count=(count*10)%M;
Here, N can be upto 10^18 and M is (10^9 +7). Since this loop takes O(n) time to execute, I get TLE in my code. Any way to reduce the time complexity?
for(i=0;i<N-2;i++)
count=(count*10)%M;
Here, N can be upto 10^18 and M is (10^9 +7). Since this loop takes O(n) time to execute, I get TLE in my code. Any way to reduce the time complexity?
The question is basically:
(count*a^b)%mod = ((count%mod)*((a^b)%mod))%mod
a = 10, b = 10^18
You can find ((a^b)%mod) using:
long long power(long long x, long long y, long long p)
{
long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
Time Complexity of the power function is O(log y).
In your case count is a 1-digit number so we can simply multiply this with (count%mod), and finally take mod of the result. If count is a big number too, and can cause overflow then we can do:
long long mulmod(long long a, long long b, long long mod)
{
long long res = 0; // Initialize result
a = a % mod;
while (b > 0)
{
// If b is odd, add 'a' to result
if (b % 2 == 1)
res = (res + a) % mod;
// Multiply 'a' with 2
a = (a * 2) % mod;
// Divide b by 2
b /= 2;
}
// Return result
return res % mod;
}