Note the error message. It's not saying you don't have access. It's saying the method cannot be called. Instance methods don't mean anything without an instance to
call them on. What the error message is telling you is that you don't have that instance.
What Bloch is telling you is that if that instance existed, code in the inner class could call private instance methods on it.
Say we have the following class:
public class OuterClass {
public void publicInstanceMethod() {}
public static void publicClassMethod() {}
private void privateInstanceMethod() {}
private static void privateClassMethod() {}
}
If we try to call those private methods from some random class, we can't:
class SomeOtherClass {
void doTheThing() {
OuterClass.publicClassMethod();
OuterClass.privateClassMethod(); // Error: privateClassMethod() has private access in OuterClass
}
void doTheThingWithTheThing(OuterClass oc) {
oc.publicInstanceMethod();
oc.privateInstanceMethod(); // Error: privateInstanceMethod() has private access in OuterClass
}
}
Note that those error messages say private access.
If we add a method to OuterClass
itself, we can call those methods:
public class OuterClass {
// ...declarations etc.
private void doAThing() {
publicInstanceMethod(); // OK; same as this.publicInstanceMethod();
privateInstanceMethod(); // OK; same as this.privateInstanceMethod();
publicClassMethod();
privateClassMethod();
}
}
Or if we add a static inner class:
public class OuterClass {
// ...declarations etc.
private static class StaticInnerClass {
private void doTheThingWithTheThing(OuterClass oc) {
publicClassMethod(); // OK
privateClassMethod(); // OK, because we're "inside"
oc.publicInstanceMethod(); // OK, because we have an instance
oc.privateInstanceMethod(); // OK, because we have an instance
publicInstanceMethod(); // no instance -> Error: non-static method publicInstanceMethod() cannot be referenced from a static context
privateInstanceMethod(); // no instance -> Error: java: non-static method privateInstanceMethod() cannot be referenced from a static context
}
}
}
If we add a non-static inner class, it looks like we can do magic:
public class OuterClass {
// ...declarations etc.
private class NonStaticInnerClass {
private void doTheThing() {
publicClassMethod(); // OK
privateClassMethod(); // OK
publicInstanceMethod(); // OK
privateInstanceMethod(); // OK
}
}
}
However, there's trickery going on here: a non-static inner class is always associated with an instance of the outer class, and what you're really looking at is:
private class NonStaticInnerClass {
private void doTheThing() {
publicClassMethod(); // OK
privateClassMethod(); // OK
OuterClass.this.publicInstanceMethod(); // still OK
OuterClass.this.privateInstanceMethod(); // still OK
}
}
Here, OuterClass.this
is special syntax for accessing that outer instance. But you only need it if it's ambiguous, e.g. if the outer and inner classes have methods with the same name.
Note too that the non-static class can still do the things the static one can do:
private class NonStaticInnerClass {
private void doTheThingWithTheThing(OuterClass oc) {
// 'oc' does *not* have to be the same instance as 'OuterClass.this'
oc.publicInstanceMethod();
oc.privateInstanceMethod();
}
}
In short: public
and private
are always about access. The point Bloch is making is that inner classes have access that other classes don't. But no amount of access allows you to call an instance method without telling the compiler what instance you want to call it on.