I'm working through some exercises on improper integrals and I've stumbled across an issue I can't resolve. I'm attempting to use the limit() function on the following problem:
Here N(x) is the cumulative distribution function of the standard normal variable.
The limit() function so far hasn't caused any problems, including problems which require L'Hôpital's rule be applied. However, I'm struggling to get compute the correct answer for this particular problem and can't work out why. The following code yields an incorrect answer
from sympy import *
x, y = symbols('x y')
init_printing(use_unicode=False) #Print the answers in unicode characters
cum_distribution = (1/sqrt(2*pi)*(integrate(exp(-y**2/2), (y, -oo, x))))
func = (cum_distribution -(1/2)-(x/sqrt(2*pi)))/(x**3)
limit(func, x, 0)
If I apply L'Hôpital's rule, i get the correct
l_hopital = diff((cum_distribution -(1/2)-(x/sqrt(2*pi))), x)/diff(x**3, x)
limit(l_hopital, x, 0)
I looked through the limit() function source code and my understanding is that L'Hôpital's rule isn't applied? In this case, can this problem be solved using the limit() function without applying this rule?