i had trained my dataset into different models such as nbModel, dtModel, rfModel, GbmModel . All these are machine learning models
now when i am saving it into a variable as
val models = Seq(("NB", nbModel), ("DT", dtModel), ("RF", rfModel), ("GBM",gbmModel))
i am getting a Seq[(String, Any)]
models: Seq[(String, Any)] = List((NB,NaiveBayesModel (uid=nb_c35f79982850) with 2 classes), (DT,()), (RF,RandomForestClassificationModel (uid=rfc_3f42daf4ea14) with 15 trees), (GBM,GBTClassificationModel (uid=gbtc_534a972357fa) with 20 trees))
if an individual model such as nbModel
val models = ("NB", nbModel)
OUTPUT : models: (String, org.apache.spark.ml.classification.NaiveBayesModel) = (NB,NaiveBayesModel (uid=nb_c35f79982850) with 2 classes)
and when i am trying to merge few columns from those models i am getting type mismatch error
val mlTrainData= mlData(transferData, "value", models).drop("row_id")
<console>:75: error: type mismatch;
found : Seq[(String, Any)]
required: Seq[(String, org.apache.spark.ml.PredictionModel[_, _])]
val mlTrainData= mlData(transferData, "value", models).drop("row_id")
Also my MlDATA is
def mlData(inputData: DataFrame, responseColumn: String, baseModels:
| Seq[(String, PredictionModel[_, _])]): DataFrame= {
| baseModels.map{ case(name, model) =>
| model.transform(inputData)
| .select("row_id", model.getPredictionCol )
| .withColumnRenamed("prediction", s"${name}_prediction")
| }.reduceLeft((a, b) =>a.join(b, Seq("row_id"), "inner"))
| .join(inputData.select("row_id", responseColumn), Seq("row_id"),
| "inner")
| }
OUTPUT: mlData: (inputData: org.apache.spark.sql.DataFrame, responseColumn: String, baseModels: Seq[(String, org.apache.spark.ml.PredictionModel[_, _])])org.apache.spark.sql.DataFrame