I am trying to implement an objective function that minimize the overlap of 2 irregular shaped 3d objects. While the most accurate measurement of the overlap is the intersection volume, it's too computationally expensive as I am dealing with complex objects with 1000+ faces and are not convex.
I am wondering if there are other measurements of intersection between 3d objects that are much faster to compute? 2 requirements for the measurement are: 1. When the measurement is 0, there should be no overlap; 2. The measurement should be a scalar(not a boolean value) indicating the degree of overlapping, but this value doesn't need to be very accurate.
Possible measurements I am considering include some sort of 2D surface area of intersection, or 1D penetration depth. Alternatively I can estimate volume with a sample based method that sample points inside one object and test the percentage of points that exist in another object. But I don't know how computational expensive it is to sample points inside a complex 3d shape as well as to test if a point is enclosed by such a shape.
I will really appreciate any advices, codes, or equations on this matter. Also if you can suggest any libraries (preferably python library) that accept .obj, .ply...etc files and perform 3D geometry computation that will be great! I will also post here if I find out a good method.
Update: I found a good python library called Trimesh that performs all the computations mentioned by me and others in this post. It computes the exact intersection volume with the Blender backend; it can voxelize meshes and compute the volume of the co-occupied voxels; it can also perform surface and volumetric points sampling within one mesh and test points containment within another mesh. I found surface point sampling and containment testing(sort of surface intersection) and the grid approach to be the fastest.