A simple solution could be, to deflate all elements, put them into a set, sort it, then iterate to transform adjectant elements to Intervals.
A similar approach could be chosen for your other question, just eliminating all distinct values to get the overlaps.
But - there is a problem with that approach.
Lets define a class Interval:
case class Interval (lower: Int, upper: Int) {
def deflate () : List [Int] = {(lower to upper).toList}
}
and use it:
val e = List (Interval (0, 4), Interval (7, 12))
val f = List (Interval (1, 3), Interval (6, 8), Interval (9, 11))
deflating:
e.map (_.deflate)
// res26: List[List[Int]] = List(List(0, 1, 2, 3, 4), List(7, 8, 9, 10, 11, 12))
f.map (_.deflate)
// res27: List[List[Int]] = List(List(1, 2, 3), List(6, 7, 8), List(9, 10, 11))
The ::: combines two Lists, here two Lists of Lists, which is why we have to flatten the result, to make one big List:
(res26 ::: res27).flatten
// res28: List[Int] = List(0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 1, 2, 3, 6, 7, 8, 9, 10, 11)
With distinct, we remove duplicates:
(res26 ::: res27).flatten.distinct
// res29: List[Int] = List(0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 6)
And then we sort it:
(res26 ::: res27).flatten.distinct.sorted
// res30: List[Int] = List(0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12)
All in one command chain:
val united = ((e.map (_.deflate) ::: f.map (_.deflate)).flatten.distinct).sorted
// united: List[Int] = List(0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12)
// ^ (Gap)
Now we have to find the gaps like the one between 4 and 6 and return two distinct Lists.
We go recursively through the input list l, and if the element is from the sofar collected elements 1 bigger than the last, we collect that element into this sofar-list. Else we return the sofar collected list as partial result, followed by splitting of the rest with a List of just the current element as new sofar-collection. In the beginning, sofar is empty, so we can start right with adding the first element into that list and splitting the tail with that.
def split (l: List [Int], sofar: List[Int]): List[List[Int]] = l match {
case Nil => List (sofar)
case h :: t => if (sofar.isEmpty) split (t, List (h)) else
if (h == sofar.head + 1) split (t, h :: sofar)
else sofar :: split (t, List (h))
}
// Nil is the empty list, we hand in for initialization
split (united, Nil)
// List(List(4, 3, 2, 1, 0), List(12, 11, 10, 9, 8, 7, 6))
Converting the Lists into intervals would be a trivial task - take the first and last element, and voila!
But there is a problem with that approach. Maybe you recognized, that I redefined your A: and B: (from the former question). In B, I redefined the second element from 5-8 to 6-8. Because else, it would merge with the 0-4 from A because 4 and 5 are direct neighbors, so why not combine them to a big interval?
But maybe it is supposed to work this way? For the above data:
split (united, Nil)
// List(List(6, 5, 4, 3, 2, 1), List(20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8))