The usage of model.fit_generator() in keras works for me, however I'd like to have a live visualisation of accuracy, loss etc. like it is easily possible with model.fit(). Couldn't find any explanations on how to do that with the model.fit_generator() function. The training method of my model looks like this:
def train_model(model, args, X_train, X_valid, y_train, y_valid):
checkpoint = ModelCheckpoint('model-{epoch:03d}.h5',
monitor='val_loss',
verbose=0,
save_best_only=args.save_best_only,
mode='auto')
model.compile(optimizer=Adam(lr=args.learning_rate), loss='mean_squared_error', metrics=['accuracy'])
model.fit_generator(batch_generator(args.data_dir, X_train, y_train, args.batch_size, True),
args.samples_per_epoch,
args.nb_epoch,
max_q_size=1,
validation_data=batch_generator(args.data_dir, X_valid, y_valid, args.batch_size, False),
nb_val_samples=len(X_valid),
callbacks=[checkpoint],
verbose=1)
Thanks for help